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ACOMEN 2017

Welcome word from Marián Slodička, Conference Chair

Dear participants,

First of all, I wish to welcome you to the city of Ghent. We will have more than one hundred talks
during this week!

This is already the seventh edition of the international conference on Advanced COmputational Meth-
ods in ENgineering. Like the previous editions of the conference, themes are concentrated on mathematical
modeling, simulation and numerical methods for solving scientific problems from various engineering disci-
plines. I would like to thank all of its participants because they turn every ACOMEN into an interesting,
learning-full and pleasant event.

Another important factor of the success of ACOMEN are the highstanding invited main lectures given
by world-wide recognized experts in their respective research fields: Susanne C. Brenner (Louisiana State
University), Zdzis law Brzeźniak (University of York), Martin Burger (University of Münster), Charles El-
liott (University of Warwick), Ralf Hiptmair (ETH Zürich), Michael Klibanov (University of North Carolina
at Charlotte), Peter Knabner (Universität Erlangen-Nürnberg, and Alfio Quarteroni (Ecole Polytechnique
Federale de Lausanne).

I also thank the session chairs and organizers of the mini symposia for their engagement; Markus Bause,
Thomas Carrao, Ivan Cimrák, Rob De Staelen, Abdellatif El Badia, Peter Frolkovič, Christophe Geuzaine,
Thomas Henneron, Matteo Icardi, Mohammad Issa, Iveta Jančigová, Klaus Kaiser, Serge Nicaise, Florin
Adrian Radu, Hendrik Rogier, Ruth V. Sabariego, and Jochen Schütz.

Special thanks goes to the organizational team of this edition, all technical staff working behind the
scenes, and in particular Karel van Bockstal, conference secretary. Should you have any questions or
specific needs during our meeting, we are more than glad to help you at the conference reception desk.

I hope you will enjoy your stay!

Kind regards,
Marián Slodička
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(M. Grimmonprez, M. Slodička) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

GPR data interpretation problem and Inverse Source Problem for wave equation
(Balgaisha Mukanova) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Inverse Coefficient Problem for a Time Fractional Diffusion Equation
(Amir Hossein Salehi Shayegan) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Recognition of a time-dependent source in a time-fractional wave equation
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Abstract

C0 interior penalty methods are discontinuous Galerkin methods for fourth order
problems. In this talk we will present a simple analysis of C0 interior penalty methods
for the biharmonic problem and discuss the applications of C0 interior penalty methods
to two nonlinear problems for plates.
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MSC 2010: 65N30, 65K15, 74S05, 49J40

Let Ω be a bounded convex polygonal domain in R2 and f ∈ L2 (Ω). Consider the follow-
ing model biharmonic problem with the boundary conditions of clamped plates:

a(u,v ) = ( f ,v ) ∀v ∈ H 2
0 (Ω), (1)

where
a(u,v ) =

∫
Ω
D2u : D2v dx , ( f ,v ) =

∫
Ω
f v dx ,

and D2u : D2v is the Frobenius inner product of the Hessian matrices for u and v .
Let Th be a simplicial triangulation of Ω, Eh be the set of the edges in Th andVh ⊂ H 1

0 (Ω)
be a Lagrange �nite element space of order ≥ 2 associated with Th . The C0 interior penalty
method for (1), introduced in [19], determines an approximation uh ∈ Vh by

ah (uh ,v ) =

∫
Ω
f v dx , (2)

where

ah (w,v ) =
∑
T ∈Th

∫
T
D2w : D2v dx +

∑
e ∈Eh

∫
e

{{
∂2w

∂n2

}}[[
∂v

∂n

]]
ds

+
∑
e ∈Eh

∫
e

{{
∂2v

∂n2

}}[[
∂w

∂n

]]
ds + σ

∑
e ∈Eh

1
|e |

∫
e

[[
∂w

∂n

]] [[
∂v

∂n

]]
ds .

Here {{∂2v/∂n2}} (resp., [[∂v/∂n]]) denotes the mean (resp., jump) of the second (resp. �rst)
normal derivative across an edge, |e | denotes the length of the edge e , and σ > 0 is a penalty
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parameter. Note that simple modi�cations of Vh or ah (·, ·) would allow other boundary con-
ditions to be handled [6, 4].

For σ su�ciently large, the bilinear form ah (·, ·) satis�es

ah (v,v ) ≥ C[ ‖v ‖
2
h ∀v ∈ Vh , (3)

where
‖v ‖2h =

∑
T ∈Th

|v |2H 2 (T )
+
∑
e ∈Eh

|e |−1‖[[∂v/∂n]]‖2L2 (e ),

and the unique solution of (2) satis�es

‖u − uh ‖h ≤ Ch‖ f ‖L2 (Ω) . (4)

The error analysis for C0 interior penalty methods can be carried out in terms of the
standard nodal interpolation operator Πh : H 2

0 (Ω) −→ Vh and an enriching operator Eh :
Vh −→ H 2

0 (Ω) de�ned by local averaging. The operator Eh enjoys the following properties
(cf. [11, 2]):

2∑
k=0

hk |v − Ehv |Hk (Ω) ≤ Ch2‖v ‖h ∀v ∈ Vh , (5)

|ah (Πhζ ,v ) − a(ζ ,Ehv ) | ≤ Ch |ζ |H 3 (Ω) ‖v ‖h ∀ζ ∈ H 3 (Ω) ∩ H 2
0 (Ω), v ∈ Vh , (6)

|ζ − EhΠhζ |H 2 (Ω) ≤ Ch |ζ |H 3 (Ω) ∀ζ ∈ H 3 (Ω) ∩ H 2
0 (Ω). (7)

We have, by (3),

‖Πhu − uh ‖h ≤ C sup
v ∈Vh

ah (Πhu − uh ,v )

‖v ‖h
, (8)

and, by (1), (2), (5) and (6),

ah (Πhu − uh ,v ) = ah (Πhu,v ) − ( f ,v )

≤ a(u,Ehv ) − ( f ,v ) +Ch |u |H 3 (Ω) ‖v ‖h

= ( f ,Ehv −v ) +Ch |u |H 3 (Ω) ‖v ‖h

≤ C (h2‖ f ‖L2 (Ω) + h |u |H 3 (Ω) )‖v ‖h ≤ Ch‖ f ‖L2 (Ω) ‖v ‖h . (9)

The error estimate (4) then follows from (8), (9), the triangle inequality and a standard inter-
polation error estimate for Πh (cf. [10]).

C0 interior penalty methods have certain advantages over classical �nite element meth-
ods: (i) They are simpler than conforming �nite element methods (especially in three di-
mensions). (ii) The lower order C0 interior penalty methods are as simple as classical non-
conforming �nite element methods and the higher order ones can capture smooth solutions
e�ciently. (iii) Unlike mixed �nite element methods, they preserve the symmetric positive
de�nite property of the continuous problem.

Since the underlying �nite element spaces are precisely the ones for second order prob-
lems, there are two other advantages: (i) Multigrid methods for the Laplace equation can be
incorporated as preconditioners for C0 interior penalty methods [12]. (ii) The isoparamet-
ric approach, originally developed for second order problems, can be extended to C0 interior
penalty methods for fourth order problems on curved domains [8].
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Note that the post-processed solution Ehuh satis�es

|u − Ehuh |H 2 (Ω) ≤ |u − EhΠhu |H 2 (Ω) + |Eh (Πhu − uh ) |H 2 (Ω)

≤ |u − EhΠhu |H 2 (Ω) +C ( |Πhu − u |H 2 (Ω) + |u − uh |H 2 (Ω) )

≤ Ch( |u |H 3 (Ω) + ‖ f ‖L2 (Ω) ) ≤ Ch‖ f ‖L2 (Ω) (10)

by (4), (5), (7), and a standard interpolation error estimate. Thus theC0 interior penalty meth-
ods are also relevant for computing conforming approximations of u.

The estimates (4) and (10) can be extended to nonconvex polygonal domains and other
boundary conditions, where h is replaced by hα and the index of elliptic regularity α is deter-
mined by the interior angles at the corners of Ω and the boundary conditions [1].

Domain decomposition methods and multigrid methods forC0 interior penalty methods
were investigated in [17, 12, 18], and an adaptive algorithm was developed in [5]. The enrich-
ing operator Eh plays a key role in the constructions and analyses of these methods. indicate
that the performance of the adaptive algorithm based on this

C0 interior penalty methods have been applied to the von Kármán model for plate buck-
ling in [7] and to the obstacle problem for clamped Kirchho� plates in [15, 14]. The estimates
(5)–(7) are again fundamental to the analyses of these methods. Surprisingly, the residual
based error estimator in [5] can also be applied directly to the obstacle problem [3].

One can also apply C0 interior penalty methods to elliptic distributed optimal control
problems with pointwise state constraints by reformulating these problems as obstacle prob-
lems for simply supported plates [16, 9, 13].

Finally we note that C0 interior penalty methods have been extended to fourth order
problems with variable coe�cients in [20] and variants ofC0 interior penalty methods can be
found in [22, 21].
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Abstract

I will discuss �nite element based space-time discretisations of the stochastic Landau-

Lifshitz-Gilbert Equations. I will explain that the sequence of numerical solutions con-

verges, for vanishing discretisation parameters, to a weak martingale solution. I will

begin with recalling a few theoretical results regarding �nite element approximations,

compactness arguments, the Skorokhod Theorem, and the maximal regularity. The main

part of my talk is based on a joint works with Lubo Baňas, Misha Neklyudov and Andreas

Prohl [3, 4, 5] and with Ben Goldys and T Jegaraj [6].

Key words: stochastic Landau-Lifshitz-Gilbert equations, �nite element method, time
discretization, Itô-Stratonovich di�erential

MSC 2010: 82D40 (35R60 37A25 37A30 37M25 60H15 65Cxx

1 Historical background

Let us begin with the following paraphrase of a passage from the famous paper [7] by W Faris

and G Jona-Lasinio. An example of primary importance in physics is provided by ferromag-

netism. Since the seminal works by Weiss [18], Landau and Lifshitz [12], and Gilbert [8], it

is well known that the behaviour of magnetization �eld M of a ferromagnetic material below

the so called Curie temperature is usually described in terms of the Laundau-Lifshitz-Gilbert

equations (LLGEs). However, this equation is known to be approximate in more than one

aspect. It takes into account only approximately the microscopic nature of the classical �elds.

In addition, quantum e�ects and other sources of �uctuations are completely ignored. It is

therefore of interest to know which properties described by these equations survive perturba-

tions, in particular small stochastic perturbations which imitate some of the neglected e�ects.

This latter problem is also of special importance in connection with some modern theories

where one would like to determine physically interesting measures invariant under the �ow

generated by the LLGEs and stable under small perturbations. Another reason for studying

stochastic perturbations of the LLGEs comes from the physical observations, see Neel [15]

and Brown [2], that the physical experiments indicate that there must be a hidden mech-

anism which makes the magnetization to jump between stationary states. These stationary

states are locally stable in the deterministic description and therefore, had the deterministic

picture been completely accurate, such jumping behaviour would be impossible, see also the

very nice article [11] by Kohn, Rezniko� and Vanden-Eijnden. The proposed model for the
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hidden mechanism is a heat bath or an external noise, and the phenomenon is often called

the noise induced magnetization reversal. The external noise is usually modelled by a time

derivative of the Brownian Motion. Once the works by Neel and Brown have become known

to the scienti�c community, there was a huge interest in the physical community in trying to

explain physical experiments using the ideas of stochastic perturbations of the LLGES, see for

instance papers [13] by Lyberatos and Chantrell, [9] Grinstein and Koch, [16] by Rikvold et al

and [14] by Martens et al. In most of these works a simple one-particle ferromagnetic material

was studied, which resulted in the reduction of the original LLGEs (which are genuine partial

di�erential equations, with a �rst order derivative in time and a second order derivatives in

space), to ordinary di�erential equations on the 2-dimensional sphere. This sphere constraint

is a consequence of the assumption that the system is well below the Curie temperature and

thus the magnetization has a length not changing in time.

2 Brief description

In this lectures I will address the following question: The numerical approximations of the

solutions to the stochastic Landau-Lifshitz-Gilbert equations and its convergence.

We anticipate that the main audience of these lectures will be young researchers (ad-

vanced PhD students and postdocs) in the Stochastic Analysis (including the quickly grow-

ing community of researchers in Stochastic Partial Di�erential Equations) who would like to

learn the theory of �nite element approximation of Stochastic Partial Di�erential Equations

on the concrete example of the stochastically perturbed Laundau-Lifshitz-Gilbert equations

as well as researchers in Partial Di�erential Equations who would like to learn some aspects

of stochastic models of PDEs.

We consider a a domain D ⊂ Rd , d = 1, 2, 3, consisting of ferromagnetic material whose

the magnetic moment at x ∈ D and time t is denoted byu(t ,x). For temperatures not too high

(below the Curie point) it hold that

|u(t ,x)| = 1, x ∈ D, t ≥ 0.

A con�guration u : D → S2 ⊂ R3, u ∈ H1
, of magnetic moments minimizes the energy

functional

E0(u) = a
2

∫
D |∇u |

2dx +
∫
D ϕ(u)dx −

∫
D H · udx (1)

consisting of exchange, anisotropy and external energies, where H is a given external �eld,

and ϕ : S2 → R represents the anisotropy of the material, e.g. ϕ(u) = β
2
(u2

1
+ u2

2
), u =

(u1,u2,u3) ∈ S2. When H = 0 the minimum of E0 subject to Neumann boundary conditions

is attained at constant functions ζ±(x) = (0, 0,±1), x ∈ D. With the so-called e�ective �eld

de�ned as

H0(u) = −∇uE0(u) = a∆u − ϕ ′(u) + H , (2)

where the gradient ∇uE0(u) is (formally) with respect to the L2-inner product, the Landau-

Lifshitz-Gilbert equations read as follows{
∂u
∂t = λ1u ×H(u) − λ2u × (u ×H(u)) on (0,∞) × D
∂u
∂n = 0 on ∂(0,∞) × D (3)

where λ2 > 0, λ1 ∈ R, and we assume that the initial data satis�es |u0 | = 1 on D. Following

Néel [15], we will consider the energy perturbed by noise

E(u) = E0(u) −
∫
D
〈 e ◦ dW ,u〉 (4)
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where e ◦ dW =
∑N

j=1 ej ◦ dWj for some ej ∈ H1
, j = 1, · · · ,N and an RN -valued Brownian

MotionW . An important problem is to study noise-induced transition between minima of E0
(the magnetization reversal). The Stochastic Landau-Lifshitz-Gilbert-Equations are obtained

formally by considering a noisy perturbation of the e�ective �eld, i.e.

H(u) = −∇uE(u) = H0(u) + ◦edW = ∆u − ϕ ′(u) + ◦edW . (5)

Rigorously, these can be written in the following Itô-Stratonovitch form

du = u ×H0(u)dt − αu × (u ×H0(u))dt +G(u)e ◦ dW (6)

where G(u) = λ1u × · − λ1u × (u × ·) and G(u)e ◦ dW is the Stratonovitch di�erential:

G(u)e ◦ dW =
1

2

∑
j

[
G ′(u)ej ·G(u)ej

]
dt +

∑
j

G(u)ej dWj

In my lecture I will speak about numerical solvability (via �nite element method) of the

above problem as well as about the solution to the magnetization reversal problem, see [3, 4, 5]

and [6].
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Abstract

We discuss variational methods for the reconstruction of moving objects from (highly)

undersampled dynamic tomography problems. The main idea is to incorporate physical

motion models at a reasonable amount of complexity and estimate appropriate motion

vectors together with the evolving image in order to obtain a suitable correlation in time.

This leads to nonsmooth large scale optimization problems to be solved with alternat-

ing minimization and convex splitting techniques. The modelling of the motion vector

�elds in the variational image reconstruction has a direct impact on the e�ciency of al-

ternating minimization problems, optimal schemes can be split into separate variational

problems for each time step and parallelized directly.

Key words: Dynamic Imaging, Inverse Problems, Variational Reconstruction, Convex
Optimization

1 Introduction

Tomographic imaging is increasingly evolving from a static to a dynamic imaging modality,

which leads to a variety of interesting questions. In particular concerns about radation doses

and needs to measure fast prevent one from measuring suitably sampled tomographic images

at every time step. Hence, images cannot be reconstructed with reasonable resolution at

di�erent time steps and novel reconstruction methods are needed that directly reconstruct

the whole time sequence, taking bene�t of the strong correlation of images in time.

We are interested in reconstructing a sequence of density images uk , k = 0, . . . ,N from

indirect data fk satisfying the relation

fk = Rkuk , (1)

where Rk is a subsampled version of the Radon transform, i.e. a set of line integrals changing

in time. State-of-the art image reconstruction would compute approximations of the uk by

solving variational problems of the form

uk ∈ argmin

u
D (Rku, fk ) + α J (uk ), (2)

where D is a suitable �delity term quantifying the di�erences between the measured data fk
and the forward projected Rku. J is a convex functional such as the frequently used total

variation or variants thereof and α > 0 is a regularization parameter. In situations of strong

undersampling of angular measurements the quality of image reconstructions deteriorates

and novel dynamic reconstruction methods need to be developed.
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2 Motion Models and Variational Reconstruction

In order to incorporate the standard information that uk is a density subject to motion we

incorporate a standard mechanical model of the form

uk (x ) = uk−1 (yk (x )) det(∇yk (x )), k = 1, . . . ,N , (3)

where yk is a deformation vector �eld. This Lagrangian formulation seems suitable in three-

dimensional image reconstruction in many tomographic setups, an alternative Eulerian for-

mulation could be formulated in terms of continuity equations connecting subsequent time

steps with the velocity �elds describing the motion (cf. [2]). Note that in the case of small mo-

tion between time steps, i.e. yk (x ) = x−vk (x ) withvk small it may be suitable to approximate

the motion at leading order by the discretized transport equation

uk = uk−1 − ∇ · (uk−1vk ), k = 1, . . . ,N . (4)

A formulation completely equivalent to (3) arises if one indeed tracks all motion back to the

original reference state u0, i.e. ,

uk (x ) = u0 (zk (x )) det(∇zk (x )), k = 1, . . . ,N , (5)

where z1 = y1 and zk = yk ◦ zk−1 for k > 1.

At the level of describing the motion there is a one-to-one relation between the yk in

(3), the zk in (5), and the velocities in a transport equation. There is a signi�cant di�erence

however in deriving variational reconstruction methods based on these models, since in such

we want to put some suitable prior (regularization) on the unknowns, e.g. small elastic or

hyperelastic energy of the motion �eld. Obviously it makes a di�erence whether we put a

prior on yk or zk , both with respect to modelling (it clearly seems more feasible to assume

smallness of yk than smallness of zk for large k) as well as with respect to the numerical

solution. In order to unify the notation let us denote the unknown deformation vectors bywk
(meaning yk in the �rst and zk in the second case) and w = (wk ). A variational model

(u,w) ∈ arg min

(u,w)∈C

N∑
k=0

(D (Rkuk , fk ) + αk J (uk )) +
N∑
k=1

βkH (wk ) (6)

with the constraint set C described by either (3) or (5), and αk respectively βk being nonneg-

ative regularization parameters. We mention that it may become suitable to choose αk = 0

for k > 1, since the images uk are determined completely by u0 and the deformations w.

3 Minimization Strategies

The general variational model (6) is a large scale optimization problem, with N +1 images and

N vector �elds to be reconstructed. Thus, we end up with around (4N + 1)M unknowns and

even for moderate images sizes like M = 128
3

Voxels and 20 time steps, this leads to about

10
8

degrees of freedom in the optimization. The fact that J and sometimes also H involve

nonsmooth terms and hence need to be treated by appropriate convex minimization methods

prevent the application of straight-forward gradient type methods. In order to e�ciently

minimize the problem after discretization it is natural to apply an alternating minimization

strategy, which enforces to eliminate the constraint by expressing uk , k ≥ 1, in terms of u0
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and wk . In both cases we can write uk = Tk (u0,w), via iterated substitution in the case of (3)

and directly in the case of (5). state model (5). The alternating minimization thus reads

um+1
0
∈ argmin

u0

N∑
k=0

(D (RkTk (u0,wm ), fk ) + αk J (Tk (u0,wm )))

wm+1 ∈ argmin

w

N∑
k=0

(D (RkTk (u
m+1
0
,w), fk ) + αk J (Tk (u

m+1
0
,w))) +

N∑
k=1

βkH (wk ),

where C (wm ) is the constraint set de�ned by (3) respectively (5) with given deformation

�eld wm
. Note that the with given deformation �eld, the �rst step is a state-of-the art image

reconstruction problem for the single variable u0, for which appropriate convex optimization

techniques can be applied (cf. [4]). At the level of the second subproblem we observe the main

di�erence between the two models (3) and (5). In the second case we can write Tk (u0,w) =
T̃k (u0,wk ), hence we can compute the deformation �elds in a decoupled way via

wm+1
k ∈ argmin

wk
D (RkT̃k (u

m+1
0
,wk ), fk ) + αk J (Tk (u

m+1
0
,wk )) +

N∑
k=1

βkH (wk ).

Hence, we obtain a memory-friendly and also easily parallelizable algorithm, which has been

implemented for the setup in Positron-Emission Tomography (PET) in [3]. In the �rst case,

which seemed more natural with respect to modelling, the motion estimation, i.e. the sec-

ond substep in the alternating minimization does not decouple and the e�cient minimization

remains an open problem. In [1] the approach was used successfully for a two-dimensional to-

mography problem with di�erent undersampling strategies, leading to strong improvements

compared to the state of the art.
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1 Introduction

Many physical models give rise to the need to solve partial di�erential equations in time

dependent regions. For example, the complex morphology of biological membranes and cells

coupled with biophysical mathematical models present signi�cant computational challenges,

[17, 19, 21]. Naturally such problems also arise in �uids and material science, for example

[12, 18]. Our motivational examples will be to applications in cell biology.

In this talk we discuss the mathematical and computational issues associated with the

formulation of PDEs in time dependent domains in both �at and curved space. Here we are

thinking of problems posed with time dependent d-dimensional hypersurfaces Γ(t ) in Rd+1.

The surface Γ(t ) may be the boundary of the bounded open bulk region Ω(t ). In this setting

we may also view Ω(t ) as (d + 1)-dimensional sub-manifold in Rd+2. Using this observation

we may develop a theory applicable to both surface and bulk equations. We will present an

abstract framework for treating the theory of well- posedness of solutions to abstract parabolic

partial di�erential equations on evolving Hilbert spaces using generalised Bochner spaces,

[1]. This theory is applicable to variational formulations of PDEs on evolving spatial domains

including moving hyper-surfaces, [2]. See [11] for a survey of various approaches to the

formulation and computation of parabolic equations on hypersurfaces.

Our setting is abstract and not restricted to evolving domains or surfaces. We can show

well-posedness to a certain class of parabolic PDEs under some assumptions on the parabolic

operator and the data. For example we may study a surface heat equation, an equation posed

on a bulk domain, a novel coupled bulk-surface system and an equation with a dynamic

boundary condition, [2].

We will describe how the theory may be used in the development and numerical analysis

of evolving surface �nite element spaces which uni�es the discretisation methodology for

evolving surface (ESFEM) and bulk equations, [6, 9, 15, 16].
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In applications often the domain has to be computed. See [3] for an account of numerical

methods for computing the solution to geometric evolution equations such as motion by mean

curvature. Evolving surface triangulations by velocity �elds which have arbitray tangenial

components give rise to ALE ESFEM, [22, 20]. Recently methods for computing parametrisa-

tions with non physical tangential components which evolve triangulations whilst maintain-

ing good mesh properties have been proposed in [14, 13].

If there is time we may discuss un�tted �nite element and implicit surface approaches,

[4, 5, 7, 8, 18].

We give some computational examples from cell biology involving the coupling of surface

evolution to processes on the surface.
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Abstract

We review applications of a very general concept of operator preconditioning to �nite

element and boundary element Galerkin discretizations.
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1 Abstract Theory

On two re�exive Banach spaces V ,W we consider two continuous sesqui-linear forms a ∈
L(V ×V ,C) and b ∈ L(W ×W ,C). Let Vh ⊂ V andWh ⊂W be �nite-dimensional subspaces,

on which a and b satisfy inf-sup-conditions with constants cA, cB > 0 Further, there is a stable

pairing connecting the spaces Vh and Wh : we assume the existence of a continuous sesqui-

linear form d ∈ L(V ×W ,C) that satis�es another inf-sup-condition

sup

wh ∈Wh

|d (vh ,wh ) |

‖wh ‖W
≥ cD ‖vh ‖V ∀vh ∈ Vh . (1)

Picking bases {b1, . . . ,bN }, N := dimVh , ofVh and {q1, . . . ,qM}, M := dimWh , ofWh , we can

introduce the Galerkin-matrices

A := (a(bi ,bj ))
N
i, j=1 , D := (d (bi ,qj ))

N ,M
i, j=1 , B := (b (qi ,qj ))

M
i, j=1 .

Theorem ([7]) If, in the setting outlined above, dimVh = dimWh , then

κ (D−1BD−TA) ≤
‖a‖ ‖b‖ ‖d ‖2

cAcBc
2

D
,

where κ (·) stands for the spectral condition number of a square matrix.

Remark. The bound of Thm. 1 is completely independent of the choice of bases for Vh
and Wh . The choice of Galerkin spaces Vh and Wh only enters through the constants cA, cB ,

and cD .
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2 Equivalent Operator Preconditioning

This is the classical variant of operator preconditioning, probably independently discovered

and proposed several times. The main idea is discussed, among others, in [5, 1] and the survey

articles [2, 12]. For applications to non-linear monotone operators see [6, 11].

Now, the role of the spaceV of Section 1 is played by a Hilbert spaceH with inner product

(·, ·)H . As before, a is a bounded sequi-linear form on H that satis�es an inf-sup condition on

a �nite-dimensional subspace Hh ⊂ H . We equip Hh with a basis {b1, . . . ,bN }, N := dimHh .

Specializing the generic setting of the previous section we make the intriguing choice

V =W = H , Vh =Wh = Hh , b (·, ·) = d (·, ·) = (·, ·)H . (2)

To begin with this means D = B =
((
bi ,bj

)
H

)N
i, j=1

, the symmetric positive de�nite Riesz

matrix for the inner product on Hh . Moreover, cB = cD = ‖b‖ = ‖d ‖ = 1 is immediate and

the assertion of Theorem 1 simpli�es to




D
−1A


Hh 7→Hh

≤ ‖a‖ ,



A
−1D


Hh 7→Hh

≤ c−1A ⇒ κ (D−1A) ≤ ‖a‖ c−1A , (3)

where ‖·‖Hh 7→Hh
is based on the norm on CN induced by (·, ·)H and the coe�cient isomor-

phism.

Compact equivalent operators [1]. If a is H -elliptic, a(u,u) ≥ cA ‖u‖
2

H for all u ∈ H ,

and is of the form

a(u,v ) = (u,v )H + (Ku,v )H with compact K : H → H , (4)

then the well-known property of compact operators that their eigenvalues accumulate at

0 only, bestows superlinear convergence on the conjugate gradient method for the normal

equtions (CGN) applied to solve linear systems of equations with coe�cient matrix A and

preconditioner D.

Bilinear forms complying with (4) arise from the variational formulations of second-order

convection-di�usion and reaction-di�usion equations. For instance, withH = H 1

0
(Ω), Ω ⊂ Rd

a bounded domain,

a(u,v ) :=

∫
Ω
gradu · gradv + β · gradu v dx , u,v ∈ H 1

0
(Ω) . (5)

In this case (·, ·)H is related to the principal part of the underlying elliptic partial di�erential

operator.

Saddle point problems [2, Sect. 8.2]. Consider the mixed variational formulation of

second-order elliptic boundary value problems with Dirichlet boundary conditions. Here we

have H = H (div;Ω) × L2 (Ω) and the Galerkin matrix induced by the corresponding inner

product can serve as a “block-diagonal” preconditioner for the inde�nite saddle point matrix,

if stable pairs of conforming �nite element spaces are used.

Another example is the variational formulation of the Stokes problem, whereH = (H 1

0
(Ω))d×

L2
0
(Ω), Ω ⊂ Rd . The inde�nite matrix arising from a stable conforming �nite element method

can be preconditioned by the block-diagonal s.p.d. matrix related to the inner product of H .

Complex variational problems. Let H be a Hilbert space over C and assume that

(·, ·)H = (·, ·)
1
+ (·, ·)

0
with two sesqui-linear forms (·, ·)∗, and that a(u,v ) = (u,v )

1
+ı (u,v )

0
,

u,v ∈ H , ı2 = 1. For instance, in frequency-domain eddy current models we encounter

H = H (curl;Ω), a(u,v ) := (curlu, curlv )L2 (Ω) + i (u,v )L2 (Ω) .
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>From a(u,u) ≥ 1√
2

‖u‖2H for all u ∈ H we conclude that cA ≥
1

2

√
2 and ‖a‖ ≤ 1 is

evident. When splitting a variational problem involving the sesqui-linear form a(·, ·) into real

and imaginary parts, we end up with a saddle point problem on the real Hilbert spaceHR×HR
related to the bi-linear form (subscripts tag real/imaginary parts)

ã

((
uR
uI

)
,

(
vR
vI

))
:= a(uR ,vR ) + a(uI ,vR ) + a(uR ,vI ) − a(uI ,vI ) .

It goes without saying that ã inherits stability and continuity constants from a. We thus �nd

κ
((

D−1
D−1

)
Ã
)
≤ 1

2

√
2 , D the Galerkin Riesz matrix of H . Thus, fast convergence of the

preconditioned minimal residual Krylov iterative solver is guaranteed.

3 Dual-Mesh Calderón Preconditioning

Now we are concerned with �rst-kind boundary integral equations on Γ := ∂Ω related to

second-order partial di�erential equations with constant coe�cients [14, Ch. 3]. In the scalar

case (“potential problems”) their weak formulations involve the symmetric positive (semi-)

de�nite bilinear forms aV and aW de�ned on the trace spacesH−
1

2 (Γ) andH
1

2 (Γ), respectively,

see [13, Ch. 7]. For Galerkin discretization of aV we employ the boundary element (BE) space

S−1,0 (Γh ) of piecewise constant functions on a triangular mesh Γh of Γ. On shape-regular

families of meshes the spectral condition numbers of the resulting Galerkin matrices will

grow like O (h−1), h the minimal meshwidth, which calls for preconditioning.

Application of operator preconditioning is motivated by the key observation that the

L2 (Γ) inner product establishes duality of H−
1

2 (Γ) and H
1

2 (Γ). Hence, using the notations of

Theorem 1, we may choose

V = H−
1

2 (Γ) , a = aV , W = H
1

2 (Γ) , b = aW , d = (·, ·)L2 (Γ) , Vh = S
−1,0 (Γh ) .

The requirementWh ⊂ H
1

2 (Γ) entails continuity for a piecewise polynomial BE spaceWh . We

also want (1) to be satis�ed with cD depending only on shape-regularity of Γh .

This challenge was successfully tackled in [15] relying on a dual mesh Γ̂h . Its construc-

tion relies on the barycentric re�nement Γ̃h of the so-called primal mesh Γh , another triangular

surface mesh created by adding barycenters of cells and midpoints of edges of Γh as new ver-

tices. ThenWh is chosen as a subspace of the BE spaceS0,1 (Γ̃h ) of piecewise linear continuous

functions on Γ̃h : we retain values at barycenters as degrees of freedom, and set values at ver-

tices of Γh and midpoints of edges to match the average of the values in the barycenters of

adjacent cells of the primal mesh.

For electromagnetic scattering, we face the electric field integral equation (EFIE)

posed on the tangential trace space H−
1

2 (divΓ, Γ) [4], which enjoys self-duality with respect

to the skew-symmetric pairing d (u, v) :=
∫
Γ (u × v) · n dS . A Γh-piecewise linear BE subspace

is the space E (Γh ) of rotated surface edge element functions, also known as RWG space. This

suggests the choices

V =W = H−
1

2 (divΓ, Γ) a = b = aEF , Vh = E (Γh )

for operator preconditioning, where aEF is the inde�nite sesqui-linear form underlying the

variational EFIE. Again, the BE spaceWh ⊂ H−
1

2 (divΓ, Γ) has to be chosen as an edge element

space on the dual mesh Γ̂h by imposing suitable constraints on functions in E (Γ̃h ). This ensures

(1) with cD a function of shape-regularity and (local) quasi-uniformity only [3].
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If Γ is a manifold with boundary (screen), then the bilinear forms of the variational scalar

�rst-kind boundary integral equations are elliptic on the “trace spaces with zero boundary

conditions” H̃−
1

2 (Γ) and H̃
1

2 (Γ) [14, Sect 3.5.3]. Those are not dual to each other but in L2-
duality to H

1

2 (Γ) and H−
1

2 (Γ). Only recently, [9] proposed integral representations of bilinear

formsaW andaW that are elliptic on those spaces and amenable to Galerkin boundary element

discretization. This paves the way for dual mesh based operator preconditioning as explained

above,see [8, 10] for details.
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Abstract

Recent results of the group of the speaker on phaseless coe�cient inverse scattering
problems and globally convergent numerical methods for coe�cient inverse scattering
problems will be presented. Results of performances of developed algorithms on experi-
mental data will be presented as well.

Key Words: phaseless inverse scattering problems, globally convergent numerical
methods

MSC 2010: Mathematics Subject Classi�cation: 35R30.

1 Phaseless Coe�cient Inverse Scattering Problems

The Phaseless Coe�cient Inverse Scattering Problem amounts to the determination of an un-
known coe�cient of either Schrodinger or Helmholtz equation from measurements of the
absolute value of the complex valued wave �eld outside of the scatterers. Phase is not mea-
sured. Since 2014 a signi�cant progress has been made in works of M.V. Klibanov and V.G.
Romanov in addressing this problem. More precisely, uniqueness theorems were proved, re-
construction procedures were established and numerical results were obtained. In parallel,
the Phaseless Coe�cient Inverse Scattering Problem was addressed by R.G. Novikov from
a di�erent standpoint. These works constitute the �rst solution of a long standing problem
posed by. K. Chadan and P.C. Sabatier in 1977 in Chapter 10 of their well known book “Inverse
Problems in Quantum Scattering Theory”, Springer, New York, 1977

2 Globally Convergent Numerical Methods for Coe�cient In-
verse Scattering Problems

The second topic of my talk is globally convergent numerical methods for Coe�cient Inverse
Scattering Problems (CISPs). This topic is pretty much connected with the �rst one. CIPs are
both highly nonlinear and ill-posed. These two factors cause very substantial challenges in
the development of numerical methods for them. This is especially true for the most di�cult
case of CIPs with single measurement data (as opposed to in�nitely many measurements).
Until recently the only idea for those methods was the least squares minimization. However,
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this approach inevitably su�ers from the phenomenon of multiple local minima and ravines.
The latter makes computational results unreliable.

Our research group has pioneered two types of globally convergent numerical methods
for CIPs with single measurement data. The �rst type is the so-called “tail functions” method.
The second type is the so-called “convexi�cation” method. The main advantage of these nu-
merical techniques over all other available ones is that a small neighborhood of the solution
is reached without any a priori knowledge of that neighborhood. Both the convergence the-
ory and numerical results will be presented. Of a particular interest are multiple results for
experimental data collected by our group.
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Abstract

In porous media and other complex media with di�erent length scales, (periodic) ho-

mogenization has been successfully applied for several decades to arrive at macroscopic,

upscaled models, which only keep the microscopic information by means of a decoupled

computation of “e�ective” parameters on a reference cell. The derivation of Darcy’s law

for �ow in porous media is a prominent example. Numerical methods for this kind of

macroscopic models have been intensively discussed and in general are considered to

be favourable compared to a direct microscale computation. On the other hand, if the

interplay of processes becomes to complex, e.g. the scale seperation does not act in a

proper way, the porous medium itself is evolving, ..., the upscaled models obtained may

be micro-macro models in the sense, that the coupling of the macroscopic equations and

the equations at the reference cell is both ways, i.e. at each macroscopic point a reference

cell is attached and the solution in the reference cell depends on the macroscopic solution

(at that point) and the macroscopic solution depends on the microscopic solutions in the

reference cells. At the �rst glance such models seam to be numerically infeasible due to

their enormous complexity ( in d + d spatial variables). If on the other hand this barrier

can be overcome, micro-macro models are no longer a burden but a chance by allowing

more general interaction of processes (evolving porous media, multiphase �ow, general

chemical reactions, ...), where the microscopic processes “compute” the constitutive laws,

which need longer be assumed (similar to the concept of heterogeneous homogeniza-

tion). We will discuss various examples and in particular numerical approaches to keep

the numerical complexity in the range of pure macroscopic models.

Micro-macro models appear in particular in evolving porous media: In [1], [2] mod-

els have been derived by (formal) periodic homogenization (two-scale asymptotic expan-

sion) dealing with surface reactions like mineral precipitation/dissolution at the surface

of the porous medium, possibly allowing for e.g. electrostatics by an interaction potential,

given or to be determined. The free boundary situation at the pore scale and then in the

upscaled model can be either handled in a phase �eld setting or as a sharp interface. We

follow the latter approach using a level set approach which is also numerically accessible.

In doing so, the interplay between �ow, transport, and evolving geometry is focused on.

As a result of the averaging procedure, a fully coupled mirco-macro model in new prin-

ciple variables is maintained. Moreover, time and space dependent coe�cient functions

are explicitly characterized by means of supplementary fully coupled cell problems. So

even the single processes are stationary the dynamics of the inner boundaries (in each

reference cell attached to each macroscopic spatial point) renders the full problem time-

dependent. For a geometry evolution in one parameter, the level set equations reduce
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to an ordinary di�erential equation and the model resembles the established coupling

approach of the porosity to the porous medium evolution, with the important di�erence

that not only porosity is e�ected, but also the di�usity and the permeability tensor (in an

exactly computable way). This approach o�ers a rigorous approach to a wide range of

processes and application, coping with phenomena like clogging (by bio�lm expansion),

karst formation, ...

There are situations when the description of the evolving medium by smooth sur-

faces is not appropriate: In soil science, aggregate formations and turnover is an import-

ant principle process, where the evolving medium is a complex agglomerate composed of

mineral and organic particles, in particular of bacteria and their products (EPS) forming

a structure of hardly any surface regularity. Here a discrete description of the medium

evolution is advisable. This can be done with a cellular automation concept. The pro-

cesses in the �uid domain are still described in a continuum mechanic frame work [3].

Mirco-macro models of large complexity can also occur in a rigid porous media, if

surface reactions with “many” species are involved. An example is the carbohydrate

metabolism in plant cells including the process of metabolic channeling, which takes

place at the outer membrane of the mitochondria. An important contribution in such

models is the mathematical description of reactions and transport processes in the cell

via suitable reaction kinetics for multi-substrate enzyme reactions. An e�ective model

for the microscopic problem which describes the behaviour of the metabolism on the cell

level has been derived in [4], [6].

To make these approaches also numerically feasible, several problems have to be ad-

dressed. Spatial discretizations are supposed to be locally mass conservative, therefore

we choose mixed FEM or dG approaches (because of its compatibility with a (roughly)

changing geometry [3]. To avoid a remeshing at every timestep and for each (of the

many) micro-problems, cut cell (�ctitious domain) approaches shall be integrated. The

overall treatment of the arising nonlinear system shall be monolithic (all-in-once) as far

as possible. Therefore only at the iterative linearised level (exact) decoupling strategies

(Schur-complement) will be used to take advantage of the then “embarrassingly” paral-

lel nature. Thus high performance computing for micro-macro problems using massive

parallelisation for the pore-scale cell problems will render the problem treatable. This

concept–for a rigid porous media, but for di�usion-reaction systems with many species–

is in the process of being worked out in the PhD thesis of T. Elbinger [7], [5].
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Abstract

Mathematical and numerical modeling of the cardiovascular system (CS) is a research
topic that has attracted increasing interest from both the mathematical and bioengineer-
ing communities over the past 20 years. This because cardiovascular diseases (CVD) have
an increasing impact in our lives. As a matter of fact, CVD are the major cause of death
worldwide, leading to more than 17.3 million deaths per year, a number that is expec-
ted to grow to more than 23.6 million by 2030. In Europe, nowadays they correspond to
nearly half of all deaths (47%).

CS features two principal components, the arterial circulation and the heart function
with its electrical and mechanical activities. Geometric complexity, lack of data to feed
the mathematical models, multiphysics and multiscale nature of the processes at hand,
represent major challenges when trying to reproduce both function and malfunction.

In this presentation we will address some of the basic processes of the CS modeling.
We �rst start with modeling stand-alone core components describing a single functional-
ity, like e.g. the artery �uid-dynamics, the heart electrical activity, the �uid dynamics in
the left ventricle, etc. Each core model needs to be e�ciently approximated numerically,
often by speci�cally devised methods. The next step is the integration of the core models
into global, coupled integrated models apt at describing a meaningful and coherent part
of the CS system. This step requires the introduction of suitable coupling conditions and
of appropriate numerical strategies for a stable, reliable, and computationally e�ective
solution of the global problem.

Modeling the cardiac function is a particularly challenging task that comprises several
core cardiac models – electrophysiology, solid and �uid mechanics, microscopic cellular
force generation, and valve dynamics – which are then coupled and �nally embedded
into the systemic and pulmonary blood circulations. It is a multiscale system of Partial
Di�erential Equations and Ordinary Di�erential Equations featuring multiphysics inter-
actions among the core models.

Clinical data are essential for CS models. Clinical radiological images (such as Com-
puter Tomography and Magnetic Resonance Imaging) are necessary to construct the
computational domains. The procedure of geometric reconstruction is di�cult and, es-
pecially for the heart, requires advanced mathematical and numerical tools.

Boundary data are also di�cult to obtain. When the computational domain results
from an arti�cial truncation, speci�c physical quantities (e.g. �uid velocity or pressure)
should be provided at those locations of the arterial tree corresponding to the arti�cial
boundaries. However, this would require invasive measurements that cannot be easily
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carried out. Finally, the huge inter- and intra-patient data variability and uncertainty
represent further sources of concern toward model calibration and validation.

In spite of all these di�culties, mathematical models can, from one side, provide a
better understanding of the physical and quantitative processes governing the CS, and on
the other side, open new frontiers in therapeutic planning and the design of implantable
devices (such as e.g. medical stents and cardiac de�brillators).

In this presentation, several numerical results to highlight the e�ectiveness of the nu-
merical strategies here presented. A few cases of clinical relevance will also be presented
and discussed.

All our numerical results have been obtained using the Finite Element library LifeV,
see www.lifev.org for more details.

Keywords: cardiovascularmodels, clinical applications, �nite element analysis,multiphysics
and multiscale problems, scienti�c computing
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Organiser: Markus Bause, Florin Adrian Radu

Description: Since recently there is an emerging interest in
analyzing and simulating poromechanics that belongs to the
classical but still largely unsolved problems. Poromechanics
has challenging applications of practical interest covering many
branches of science and technology, in particular, the geosciences
(e.g. geothermal energy, oil and gas recovery, fracturing), envi-
ronmental sciences (e.g. long-term disposal of waste, remedia-
tion of contaminated sites), mechanical engineering (e.g. vibro-
acoustics and vehicle engineering) and the life sciences (e.g.
biomechanis and medicine). Mathematical models for porome-
chanics are built upon the work of Biot and couple mechanical
deformation with fluid flow. They involve non-linear, possible
degenerate, systems of partial differential equations. This com-
plicates their mathematical analyses and the design of efficient
numerical schemes. In this minisymposium recent advances in
mathematical modelling of poromechanics as well as in the devel-
opment of reliable discretization schemes and solver technology
for the coupled systems are discussed. A special focus will be on
problems with multiphase or reactive flow phenomena. Further,
applications of practical relevance belong also to the scope of
interest.
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Abstract

In this work the numerical approximation of the Biot system of poroelaticity by an

optimized arti�cial �xed-stress iterative coupling scheme is addressed. For the numerical

approximation of the subproblems of �uid �ow and mechanical deformation families of

space-time �nite element methods are used. The convergence of the iteration scheme is

proved and its numerical performance properties are illustrated.

Key words: Poroelasticity, iterative coupling, space-time �nite element methods
MSC 2010: 65M60, 65M12

1 Introduction

The modelling of coupled mechanical deformation and �ow in porous media has become of

increasing importance in several branches of natural sciences and technology including power

engineering (e.g., geothermal exploration, lithium-ion batteries), environmental engineering,

petroleum and reservoir engineering, biomechanics and medicine. The numerical simulation

of coupled mechanical deformation and �uid �ow is complex due to the structure of the model

equations and continues to remain a challenging task. Recently, iterative coupling techniques

have attracted researchers’ interest; cf., e.g., [1, 2] and the references therein. The appreciable

advantage of these approaches is that by coupling the model components iteratively highly

developed simulation techniques for each subproblem can be used fully.

2 Model and space-time �nite element discretization

Here we study the approximation of the Biot system of poroelasticity

−∇ · σ (u,p) = ρbд , ∂t

(
1

M
p + ∇ · (bu)

)
+ ∇ · q = f , q = −

K

η

(
∇p − ρf д

)
, (1)

equipped with the initial conditions p (0) = p0 and u (0) = u0 and appropriate boundary

conditions, by the arti�cial �xed-stress iterative coupling scheme(
1

M + L
)
∂tp

k+1 + ∇ · qk+1 = f − b∇ · ∂tuk + L∂tpk , qk+1 = −K∇pk+1 , (2)

−∇ ·
(
2µε (uk+1) + λ∇ · uk+1I

)
= ρbд − b∇p

k+1 . (3)
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In Eqs. (2) and (3) an optimization in terms of an acceleration of the iteration process

comes through the adaptation of the numerical stabilization or tuning parameter L. For the

discretization in time of the subproblems (2) and (3) continuous and discontinuous Galerkin

methods are proposed. Mixed �nite element methods are applied for the spatial discretization

of the subproblem of �uid �ow; cf. [3]. The convergence of the iterative coupling scheme is

proved; cf. [1]. E�cient solution techniques for solving the arising algebraic systems of equa-

tions are addressed; cf. [4]. The convergence and performance properties of the approaches

are illustrated by numerical experiments. In particular, the optimality of the choice of the

tuning parameter L, that is proposed by the analyses, is studied carefully.

Figure 1: Simulation of poroelasticity in reservoir engineering.

Finally, future applications of the methods to the fully dynamic Biot-Allard model of poro-

elasticity that captures elastic waves in the porous medium by coupling the hyperbolic elastic

wave equation with the parabolic �ow problem are discussed. This requires an extension of

the space-time �nite element techniques to wave phenomena; cf. [5].
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Abstract

In this work, we propose a novel, robust linearization scheme for the nonlinear Biot’s

equations, modeling unsaturated, deformable porous media, which we discretize in space

by the �nite element method and in time by the backward Euler method. The nonlinear,

coupled system of equations is decoupled and linearized by the simultaneous application

of a Fixed Stress Splitting concept and the L-scheme. We demonstrate numerically the

robustness of the scheme and compare its performance with the linearization via New-

ton’s method, which is known to lack robustness and is nevertheless usually the method

of choice.

Key words: Poromechanics, Fixed Stress Splitting, L-Scheme, Anderson acceleration

1 Introduction

The coupling of �uid �ow and mechanical deformation in unsaturated porous media is rel-

evant for many applications ranging from modeling rainfall-induced land subsidence in en-

vironmental engineering to understanding the swelling of cement-based materials in civil

engineering. Due to the involved models’ nonlinear, coupled character, the numerical so-

lution of the corresponding discretized problem is challenging and requires in particular a

robust linearization method. Newton’s method is commonly the method of choice although

it is known to lack robustness due to its limitation to local convergence. Numerical examples

for this problem show, indeed, that Newton’s method might fail to converge and should not be

chosen irrespective of the example. Instead, we propose a novel, robust linearization scheme,

which decouples the separate mechanics and �ow problems and applies an inexact Newton’s

method to the �ow problem, see Section 3.

2 Mathematical model – Nonlinear Biot’s equations

In this work, we consider porous media assuming in�nitesimal deformations, incompressible

solid grains and the presence of two �uids. One �uid phase is assumed to be incompressible,

whereas the other �uid phase is assumed to be a passive phase, which can be neglected.
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Following the work of Coussy [1], the corresponding governing equations are given by

−∇ ·
[
2µε (u) + λ∇ · uI − αpEI

]
= ρbд, (1)

ϕ0∂tsw + αsw∂t∇ · u + ∇ · qw = 0, (2)

qw + λw (∇pw − ρwд) = 0, (3)

where the primal variablesu, pw ,qw denote mechanical displacement, �uid pressure and �uid

�ux, respectively. For the saturation sw = sw (pw ) and mobility λw = λw (sw ), we employ the

van Genuchten model. The pore pressure pE is given by pE (sw ,pw ) = swpw −
∫ sw
0

s−1w (S ) dS .

The Lamé parameters µ, λ, the initial porosity ϕ0, the Biot constant α , the �uid density ρw ,

the bulk density ρb and the gravitational acceleration д are constant.

3 Numerical solution

In order to discretize Eq. (1)-(3) in space, we employ linear Galerkin �nite elements for the

displacement u, and lowest order Raviart-Thomas mixed �nite elements for pressure pw and

�ux qw . Additionally, we employ the backward Euler method for time discretization.

In order to linearize robustly the discretized system of equations, we propose the follow-

ing strategy. First, we decouple the discrete problem by employing the concept of the Fixed

Stress Splitting scheme [2], automatically linearizing the cross-coupling. Simultaneously, we

employ the L-scheme [3] in order to linearize the decoupled �ow problem. A similar strategy

has been rigorously shown to be globally converging for nonlinear Biot’s equations involving

nonlinear mechanics, nonlinear compressibility and a linear coupling [4]. Due to the resulting

scheme’s �xed point character, only linear convergence can be expected. In order to accelerate

the convergence, we apply Anderson acceleration [5].

In this talk, we demonstrate numerically the robustness of the scheme for cases the stan-

dard Newton’s method fails to converge.

Acknowledgements

J.W. Both wishes to thank Meltzer foundation for the grant 2017/05/LMH to participate at

ACOMEN 2017.

References

[1] O. Coussy, Poromechanics, Wiley and Sons (2004).

[2] J.W. Both, M. Borregales, J.M. Nordbotten, K. Kumar, F.A. Radu, Robust �xed stress
splitting for Biot’s equations in heterogeneous media, Appl. Math. Lett. 68 (2017) 101–108.

[3] F. List, F.A. Radu, A study on iterative methods for solving Richards’ equation, Comput.

Geosci. 20 (2016) 341–353.

[4] M. Borregales, F.A. Radu, K. Kumar, J.M. Nordbotten, Robust iterative schemes for
non-linear poromechanics, arXiv:1702.00328.

[5] H.F. Walker, P. Ni, Anderson Acceleration for Fixed-Point Iterations SIAM J. Numer. Anal.

49 (2011) 1715–1735.

ACOMEN 2017

40



Book of abstracts of the 7th International Conference
on Advanced Computational Methods
in Engineering, ACOMEN 2017
18–22 September 2017.

A new iterative algorithm based on the �xed-stress split
scheme for solving the Biot’s problem

Francisco Gaspar1, Kundan Kumar2, Florin Adrian Radu2 and Carmen
Rodrigo3

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
2 Department of Mathematics, University of Bergen, Norway

3 Department of Applied Mathematics, University of Zaragoza, Spain

e-mails: Gaspar@cwi.nl, kundan.kumar@uib.no, florin.radu@uib.no,
carmenr@unizar.es

Abstract

In recent years, intensive research has been focused on the design of e�cient methods
for solving the large linear systems arising from the discretization of the Biot’s model,
since in real simulations it is the most consuming part. There are mainly two approaches,
the fully coupled methods and the iterative coupling methods. At each time step, the fully
coupled methods solve simultaneously the system of equations for all the unknowns,
whereas iterative coupling methods solve sequentially the equations for �uid �ow and
geomechanics, until a converged solution within a prescribed tolerance is achieved. A big
advantage of these methods is their �exibility since two di�erent codes for �uid �ow and
geomechanics can be linked for solving the Biot’s model. Due to its unconditional stabil-
ity, one of the most frequently used schemes of this type is the so-called �xed stress split
method. This sequential-implicit method basically consists in solving the �ow problem
�rst �xing the volumetric mean total stress, and then the mechanic part is solved from
the values obtained at the previous �ow step. In this work, we propose a new algorithm
based on this method, which results in a very appealing alternative due to its parallel-
izable properties. The convergence of this iterative scheme is proved and illustrated by
numerical experiments.
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Abstract

This study presents advective-dispersive solute transport processes using random

walk particle tracking in heterogeneous porous formations to assess macrodispersion

phenomena. Laboratory solute transport experiments were also conducted to validate the

numerical results based on di�erent stochastic models. The most noticeable quantitative

outcome was relevant to particle transfer between di�erent hydraulic conductivities and

its stochastic modeling.

Key words: random walk particle tracking, macrodispersion, spatial moment analysis,
heterogeneous porous media

1 Introduction

Dispersion of solutes in transport by groundwater is governed primarily by the spatial vari-

ability of the hydraulic conductivity. The rate of spreading of a solute plume is quanti�ed

in terms of macrodispersion, leading to the non-Fickian behavior of transport in heteroge-

neous porous media [1, 2]. The aims of this study are to assess macrodispersion phenomena

in heterogeneous porous formations using random walk particle tracking and to validate the

results based on laboratory-scale solute transport experiments.

2 Random walk particle tracking (RWPT)

Simulation of advective and dispersive mass transport may proceed by changing particle po-

sitions with time via an Itô interpretation, give as [1]

Xp (t + ∆t ) = Xp (t ) +A(Xp , t )∆t + B (Xp , t )Ξ(t )
√
∆t (1)

where Xp (t ) is the i-component of the particle location at time t , ∆t is the time step, and Ξ
contains three normally distributed random numbers with zero mean and unit variance. The

vector A represents the deterministic drift determined by the �uid �ow velocity and contains

contributions from the dispersion tensor. The matrix B represents the direction displacement
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Figure 1: Variation of transverse (left) and longitudinal (right) macrodispersivities.

distance for the random process Ξ(t )
√
∆t , which expresses Brownian motion. RWPT was

linked with spatial moments to identify longitudinal (AL) and transverse (AT ) macrodisper-

sivities using three stochastic models [1, 2, 3] expressing particle transfer between di�erent

hydraulic conductivities.

3 Laboratory-scale solute transport experiments

Laboratory experiments with dye were conducted in a 1 × 1 × 0.03 m sandbox with 0.03 ×

0.03 × 0.03 m blocks having di�erent hydraulic conductivities. A methodology using spatial

moment analysis linked with image processing of a dye tracer behavior was developed to

identify the changes in longitudinal and transverse macrodispersivities caused by the pres-

ence of heterogeneities with the correlation length of 0.18 m.

4 Results and discussion

Estimation results of transverse and longitudinal macrodispersivities obtained in solute trans-

port experiments are plotted in Figure 1 as a function of the displacement distance of the cen-

troid of dye tracer. Numerical results using RWPT are also shown in the same �gure for three

di�erent stochastic models. Three models show smaller transverse macrodispersivities than

experimental results at an earlier stage of the displacement distance. This attributes to the

e�ect of initial injection of dye tracer. On the other hand, experimental values were in good

agreement with Hoteit’s model [2], especially in longitudinal macrodispersivity. It is inferred

that solutes governed by other models [1, 3] have a tendency to migrate into higher hydraulic

conductivity areas in this experimental scale, leading to smaller degree of solute spreading in

the longitudinal direction.

Acknowledgements

This work has been partially supported by JSPS KAKENHI Grant Numbers JP16K07941.

References

[1] G. Uffink, Analysis of Dispersion by the Random Walk, Ph.D Dissertation, Delft Univer-

sity of Technology, 1990.

ACOMEN 2017

44



[2] H.Hoteit, R.Mose, Younes. A., Lehmann, F., Ph. Ackerer, Three-dimensionalmodeling
of mass transfer in porous media using the mixed hybrid �nite elements and the random-
walk methods, Math. Geol., 34(4)(2002), 435–456.

[3] C. Cordes, H. Daniels, G. Rouve, A new very e�cient algorithm for particle tracking in
layered aquifers, Proc. Inter. Conf. on Computer Methods and Water Resources (1991),

41–55.

ACOMEN 2017

45





Book of abstracts of the 7th International Conference
on Advanced Computational Methods
in Engineering, ACOMEN 2017
18–22 September 2017.

Finite element discretization Biot’s consolidation model with
strong mass conservation

Guido Kanschat1 and Béatrice Rivière2

1 Interdisciplinary Center for Scienti�c Computing (IWR), Heidelberg University
2 Computational and Applied Mathematics Department (CAAM), Rice University

e-mails: kanschat@uni-heidelberg.de, riviere@caam.rice.edu

Abstract

A �nite element discretization for Biot’s consolidation model is derived. It features

a projection-free continuity equation and thus provides strong mass conservation. The

seepage velocity is modeled by a mixed method with Raviart-Thomas elements. The solid

deformation is discretized by a divergence-conforming discontinuous Galerkin method.

We present key features of the analysis and numerical evidence for the feasibility of the

method.

Keywords: Biot equations, consolidation, discontinuous Galerkin, divergence-conforming,
mixed �nite element method

MSC 2010: 65N30, 74F10

1 Biot’s consolidation model

The consolidation model couples the deformation of a porous solid body to the �ow of a �uid

through its pores. The model is derived under the simplifying assumptions that inertial e�ects

of the solid are irrelevent, thus the solid is at every time in static equilibrium with the �uid

forces. Furthermore, we make the assumption of in�nitesimally small strain and stress, such

that the model is linear. Then, Biot’s consolidation model reads

∂
∂t (csp + α∇·u) + ∇·w = f1, in Ω × (0,T ), (1)

K−1w = −∇p, in Ω × (0,T ), (2)

−∇· (σ − αpI) = f2, in Ω × (0,T ). (3)

Here, α is the Biot-Willis constant, which represents the pressure-storage coupling coe�cient.

The constant cs represents the compressibility of the �uid. The permeability K is a symmetric

positive de�nite matrix. We assume here that the e�ective stress tensor satis�es Hooke’s law:

σ = λ(∇·u)I + 2µε (u),

where

ε (u) =
1

2

(∇u + (∇u)T ).
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We note that in applications involving water as a �uid under moderate pressure, we have

to deal with incompressibility, that is, cs ≈ 0. Then, in the conservative case (f1 = 0), the

continuity equation (1) reduces to

α ∂
∂t∇·u = −∇·w,

from which we deduce that α must be related to unaccounted volume in the model and thus

in the ideal case of a correct model α = 1. In this case, we can say that every volume fraction

vacated by the dolid is �lled by �uid and vice versa.

2 Discretization

Our goal is the derivation of a discretization for equations (1) to (3) which is stable in the

limits cs = 0 and α = 0. Furthermore, we strive to achieve the physically important property

of conservation of mass. This is achieved by two means:

1. The Darcy problem in equations (1) and (2) is discretized by a mixed method with a cer-

tain pressure space Qh . Hence, the pressure and the divergence of the seepage velocity

w in (1) are in the same space.

2. The displacement space is chosen, such that its divergence is equal to the pressure space

Qh as well.

If these two conditions are met, even in the �nite element formulation (1) holds pointwise.

Choosing a discretization matching the second condition, we were guided by our previous

work on Stokes-Darcy coupling [1, 2] and choose a divergence conforming discontinuous

Galerkin method with the correct pressure space.
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Abstract

We consider a linear globally convergent scheme for non-linear di�erential equa-

tions rising in unsaturated �ow through porous media. Particularly, the focus is on non-

equilibrium e�ects, like hysteresis and dynamic capillary e�ect, which make the system

pseudo-parabolic. Also a domain decomposition scheme using the aforementioned lin-

earization technique is proposed that ensures numerical convergence for heterogeneous

and layered/fractured porous domains. We discuss the convergence of the schemes and

show numerical results that validate the theoretical �ndings.

Key words: L-scheme, Porous �ows, Hysteresis, Capillarity, Domain decomposition,
MSC 2010: Numerical analysis, Functional Analysis

1 Introduction

The Richards equation is a commonly used model for unsaturated �ow through porous media.

Using the Darcy law in the mass balance equation, and bringing the resulting equation to a

dimensionless form, for gravity driven �ow one gets the equation:

∂tS(p) = ∇ · [k(x, S) (Nc∇p − д̂)] . (1)

Here д̂ is the unit vector of gravitational acceleration, Nc is the capillary number, and k(x, S) is
a nonlinear function that is determined based on experiments. Two unknowns are involved:

S , the water saturation (0 < S < 1) and p, the water pressure. Standard models assume that

these are related by a nonlinear relationship determined, again, based on experiments:

−p = Pc (S). (2)

However (2) does not take into account the hysteresis e�ects and dynamic e�ects [1] that are

observed from experiments. A model incorporating such e�ects is proposed in [1]:

−p = P+(S) − P−(S) · sign(∂tS) − τ f (S)∂tS . (3)
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(1) and (3) constitute a highly non-linear pseudo-parabolic system of equations which is di�-

cult to solve numerically. Moreover, if the porous domain is layered then the variance of struc-

tural parameters may lead to discontinuities of the saturation at contact interfaces between

homogeneous blocks. This posses signi�cant problems for the convergence of the numerical

method. Below we propose a linear scheme which is not limited by these issues.

2 Mathematical formulation and results

We discretize (1) in time. If time T is divided in N time-steps of size τ (i.e. T = Nτ ) then for

solving for the nth time-step we use the following linear iteration:

Lpin − τ∇ ·
[
k(x, S i−1n )Nc∇p

i
n
]
= Lpi−1n − τF (S i−1n ,p

i−1
n ) − τ∇ ·

[
k(x, S i−1n )д̂

]
, (4)

where the subscript n stands for nth time-step and superscript i stands for ith inner iteration,

and L > 0 is a constant. In [2, 3], (1) and (2) were solved using F (S,p) = S −Sn−1 and S i−1n was

calculated in each step using inverse of Pc (S) function, i.e. S i−1n = (Pc )
−1(pi−1n ). It was shown

in [2, 3] that convergence of the scheme can be guaranteed irrespective of initial guess choice

and so pn could be de�ned as pn = limpin . For solving (1) and (3) we use the relation:

Sn := S in = Sn−1 + τF (Sn−1,pn−1), (5)

but in this case F (S,p) is the unique function that solves:

P−(S)Ψε (F (S,p)) + τ f (S)F (S,p) = P+(S) + p. (6)

Here Ψε is a regularized version of sign function. The convergence result is summarized in

Theorem If f , P+ and P− are Lipschitz and k ≥ km > 0 for all arguments, then there exists a
Lm > 0 and τM > 0 such that pin solving (4) converges as i →∞ for all L > Lm and τ < τM .

We further extend the linearization procedure in combination with a domain decompo-

sition approach for the system (1) and (2) and for the system (1) and (3). We consider two

domains Ω1 and Ω2 sharing a common interface Γ, each of them having their own param-

eterization. The model is solved in each subdomain separately and the results are coupled

through a Robin type boundary condition on Γ. At each time step, an L-type linearization is

used. For brevity we omit the details. Numerically, convergence is observed for all the error

metrics. Also, a comparison with conventional schemes reveals the robustness of our method.
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Abstract

Unsaturated porous media �ow models are nonlinear, degenerate equations of parabolic

type. This makes developing numerical schemes for such problems particularly challeng-

ing. We discuss a coupled iterative - domain decomposition approach for the numerical

discretization of a porous medium �ow model.

Key words: convergence analysis, degenerate parabolic problems, domain decomposi-
tion, linear iterative scheme, porous media �ow model

1 Introduction

Porous media �ows are encountered in numerous real-life applications. Examples in this

sense are enhanced oil recovery, geologicalCO2 storage, or design of fuel cells. Mathematical

modelling and numerical simulation tools are essential for understanding and controlling such

processes. Commonly, the resulting mathematical models are (systems of) nonlinear partial

di�erential equations of evolution type, with nonlinearities that vanish or become unbounded

depending on the solution of the equation.

We consider the Richards equation modelling unsaturated water �ow in a porous medium.

In a dimensionless setting, the porous medium is a bounded domain Ω ⊂ Rd (d ∈ {1, 2, 3})

with Lipschitz continuous boundary, and T > 0 a maximal time. The Richards equation re-

sults after combining the mass balance equation with the Darcy law. Using the Kirchho�

transform and neglecting gravity terms, one has

∂tb (u) − ∆u = f , (1)
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where u is the unknown "pressure" after the Kirchho� transformation, f the source term and

b a nonlinear, non-decreasing and Hölder continuous function in u that may also depend on

x . Initial and boundary conditions complete (1).

Here ∂ub can become 0 or in�nite, so implicit schemes are needed. These lead to nonlin-

ear problems, for which robust and convergent numerical schemes have to be constructed, a

challenging task in view of the character of the nonlinear function b.

2 A robust and convergent iterative scheme

If the medium consists of homogeneous blocks, applying domain decomposition schemes is

meaningful. The original problem is decoupled into smaller size sub-problems, for which

schemes with optimally chosen parameters can be employed. Assume that Ω consists of two

adjacent sub-domains Ω1,2, separated by a common interface Γ. With N ∈ N and τ = T /N
being a �xed time step, let tk = k∆t (k = 0, . . . ,N ) and uk ≈ u (tk )), an Euler implicit scheme

for (1) reads

b (uk ) − τ∆uk = b (uk−1) + τ fk , (2)

where fk = f (tk ) is the source term at tk . To de�ne an iterative, domain decomposition

scheme for approximating uk we construct the sequence (uik,1,u
i
k,2) (i = 0, 1, . . . ), where uik, `

approximate the restriction of uk to the sub-domain Ω` (` = 1, 2). With λ > 0 arbitrary and

L` > 0 su�ciently large (see [2], uik, ` solves

L`u
i
k, ` − τ∆u

i
k, ` = L`u

i−1
k, ` − b (u

i−1
k, ` ) + b (u

i−1
k−1, ` ) + τ fk in Ω`,

−∇uik, ` · n` = д
i
` + λu

i
k, ` at Γ,

Here n` is the unit normal at Γ pointing into Ω3−` , while дi
`
:= −2λui−1k,3−l − д

i−1
3−`

. Moreover,

u0k, ` := uk−1, ` . Observe that the problems are decoupled and linear.

In this presentation we discuss the convergence (i → ∞) of (uik,1,u
i
k,2) to the limit pair

(uk,1,uk,2). In particular, one has uk,1 = uk,2 and ∇uk,1 · n1 + ∇uk,2 · n2 = 0 at Γ, thus uk, ` is

the restriction of uk to Ω` (see [3]).
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Abstract

In this work we present monolithic and splitting schemes for solving the non-linear
Biot model. The convergence of the schemes is shown rigorously. Illustrative numerical
examples are presented to sustain the theoretical results.

Key words: Biot model, iterative splitting, Newton method, convergence analysis

1 Introduction

Fully coupled porous media �ow and mechanics, i.e. poromechanics plays an important role
in many relevant applications as e.g. energy storage in the subsurface, CO2 sequestration or
geothermal energy extraction. The most used mathematical model for poromechanics is the
(quasi-static) linear Biot model [4]. Nevertheless, in many applications the linearity assump-
tion is not realistic. In this work we consider a non-linear extension of the Biot model:

−∇ · [2µε (u) + a(∇u) + h(∇ · u)] + α∇ · (pI ) = f , (1)

∂t (b (p) + α∇ · u) − ∇ · (
K
µf
∇p − ρf g) = д, (2)

where µ > 0 is the constant shear modulus, u is the displacement, ε (u) = 1
2
(
∇u + (∇u)t

)
,

p is the �uid pressure, I is the identity matrix, α the Biot coe�cient and K, g and µf are the
permeability, gravitational vector and viscosity, respectively. The coe�cient functions a(·),
h(·) and b (·), as well as the source terms f ,д are supposed to be given.

Due the coupling and the non-linearities the system above is di�cult to be solved (in-
dependent of the implicit discretization one choses). For the linear case we refer to [5] for
a review of the splitting methods available and a discussion on their stability. The recom-
mended splitting schemes are the �xed stress and the undrained split. For the convergence
analysis of these scheme we refer to the recent papers [7, 3]. In the present work we focus on
e�ciently solving the non-linear system (1)-(2) by using Newton’s method.
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2 Iterative schemes based on Newton’s method for the non-
linear Biot model

We �rst discretize the system (1)-(2): we use backward Euler for the discretization in time and
the �nite element pair P1-bubble/P1, that is, the so-called MINI element. This pair of �nite
elements was proven to be stable for the linear Biot’s model in [9]. One can solve the resulting
fully discrete non-linear system either monolithically or by combining a linearization method
with a splitting algorithm. For the case a = 0 and h(·),b (·) monotone increasing we proposed
in [2] a monolithic and a splitting scheme based on a linearization by the L-scheme. The idea
of the L-scheme, see e.g. [6] is to solve a non-linearity F (U ) iteratively by linearizing in the
following way

F (U i ) + L(U i+1 −U i ), (3)

where i is the iteration index and L > 0 a free to chose parameter. The L-scheme is very robust
but only linearly convergent. Moreover, it works only for monotone coe�cient functions. We
propose now new monolithic and splitting schemes based this time on the Newton scheme.
For this, a non-linearity F (U ) will be solved by

F (U i ) + F ′(U i ) (U i+1 −U i ), (4)

with F ′ being the Jacobi matrix. The monolithic and splitting scheme will be rigorously ana-
lyzed, techniques from [3] and [8] being employed. The quadratic, but local convergence will
be proved. Illustrative numerical results will be presented. This will include also simulations
based on higher-order space time elements, extending our results for the linear case in [1].
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Abstract

Several systems of evolutionary partial di�erential equations may contain sti� terms,
which require an implicit treatment. Typical examples are hyperbolic systems with sti�
hyperbolic or parabolic relaxation and kinetic equations in regimes close to �uid dynamic
limit. In the hyperbolic-to-hyperbolic relaxation (HSHR) a natural treatment consists in
adopting implicit-explicit (IMEX) schemes, in which the relaxation is treated by an im-
plicit scheme, while the hyperbolic part is treated explicitly [1]. In the hyperbolic-to-
parabolic relaxation (HSPR) standard methods relax to an explicit scheme for the para-
bolic limit, thus su�ering from parabolic CFL restriction. This drawback can be overcome
by a penalization method, consisting in adding and subtracting the same term, so that
the system appears as the limit relaxed system plus a small perturbation, [2, 3]. In this
talk we present a uni�ed IMEX approach for systems which may admit both limits. This
generalizes the two approaches: HSHR and HSPR. The methodology is illustrated in the
case of the simple 2x2 system

ut +vx = 0,

εαvt +
1
εα

ux = −
1
ε
(v − f (u))

depending of an additional parameter α which modi�es the nature of the asymptotic
behaviour which can be either hyperbolic (α = 0, gives HSHR) or parabolic (α = 1,
gives HSPR). The main idea is to treat the variable v in the �rst equation implicitly and
to discretize the time by globally sti�y accurate IMEX schemes. The modi�ed equation
associated to the scheme has bounded characteristic speeds. This approach is capable
to capture the correct asymptotic limit of the system independently of the scaling used.
Several examples will be presented.
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Abstract

The discretization-in-space of time-dependent partial di�erential equations may lead

to sti� ordinary di�erential equations. Implicit time-stepping schemes can in such a

case be bene�cial as they do not su�er from severe time step restrictions. However, the

computational complexity of standard schemes is enormous. In this work, we reduce the

computational complexity by applying implicit multiderivative time integration schemes

to the hybridized discontinuous Galerkin method. We present numerical schemes that

are of high order in both time and space.

Key words: hybridized discontinuous Galerkin method, CFD, multiderivative time in-
tegrator, high-order method

This work is concerned with time-dependent partial di�erential equations (PDEs) on a

domain Ω in convection-di�usion form, i.e.,

wt + ∇ · (f (w) − fv (w,∇w)) = 0. (1)

The system is assumed to be equipped with suitable initial and boundary conditions. This

type of problem arises in many applications such as, e.g., in computational �uid dynamics.

(Note that both Euler and Navier-Stokes equations are covered by this framework.)

After discretizing the PDE (1) in space one usually obtains an ordinary di�erential equa-

tion (ODE) with given initial data

d

dt
y(t) = д(y), y(0) = y0. (2)

If viscosity is dominating, or if the discretization uses a high-order of approximation order,

this equation usually turns out to be sti�, so implicit solvers are methods of choice. It is often

discretized using standard ODE time integrators such as multistage or multistep methods.

These methods achieve a high order in time by computing intermediate stage values or by

using a history of data points.

Another way to increase the accuracy of the method is achieved by using additional in-

formation in the form of additional derivatives of the solutiony which can be expressed using
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the original ODE (2). Combining this approach while still allowing for multiple stages and

steps leads to the general class of multistep-multistage-multiderivative time integrators [3].

The methods can be constructed to have high accuracy in time, good stability properties, and

a low number of stages. The last point is very important because the solution step associated

to each stage is computationally expensive. The e�cient application of explicit and implicit

multiderivative schemes to ‘standard’ discontinuous Galerkin (DG) schemes has been presen-

ted, e.g., in [2, 4].

In contrast to ‘standard’ DG methods, hybridized discontinuous Galerkin (HDG) discret-

izations [1] introduce an additional hybrid unknown λ on the trace of the triangulation of

Ω. This allows to apply static condensation techniques to decrease the size of the resulting

system of equations that has to be solved. This makes the method especially interesting for

sti� problems with implicit time integration techniques where the implicit solution steps are

usually the most time and memory consuming part of the computation. Therefore, the HDG

method is in particular suited to be coupled with implicit multiderivative time integrators.

We present the combination of multiderivative time integrators and the HDG method.

We will apply an approach similar to the one presented in [4] where an auxiliary variable

was introduced to obtain a stable and e�cient discretization without the problem of increas-

ing stencils that typically occurs in higher derivatives. The resulting scheme is veri�ed by

numerical experiments and the results are discussed.
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Abstract

Singularly perturbed equations place stringent requirements on the numerical meth-

ods used to compute an approximation. One popular method are IMEX time integration

schemes, for which the equation is needed to be split into a sti� and a non-sti� part.

In this work we present the RS-IMEX splitting for singularly perturbed equations,

which is based on the singular limit of the equation. It is analyzed and compared with

splittings from literature in terms of stability, e�ciency and accuracy.

Key words: IMEX, isentropic Euler, incompressible Euler, asymptotic preserving

The incompressible Euler equations are an approximation of the compressible Euler equations

for low Mach (ε) number �ows. Furthermore, one can show that the compressible one trans-

forms towards the incompressible one as ε → 0. This can be understood best if we consider

the isentropic Euler equations, assume that every quantity can be represented by an asymp-

totic expansion (w = w(0) + εw(1) . . . ) and compute the formal limit ε → 0 (see [7] for a more

formal proof):(
ρ
ρu

)
t
+ ∇ ·

(
ρu

ρu ⊗ u + p (ρ )
ε2 · Id

)
= 0

ε→0

−→

(
0

u(0)

)
t
+ ∇ · *

,

u(0)

u(0) ⊗ u(0) +
p(2)
ρ (0)
· Id

+
-
= 0

Computing a suitable numerical approximation for low Mach number �ows is quite di�cult

and topic of several recent publications, e.g. [3, 4, 6]. One special challenge is that the numer-

ical method should show a similar behavior for ε → 0 as the equation. This property is called

asymptotic preserving (AP).

One way to obtain a suitable numerical method is to split the equation into a sti� and a

non-sti� contribution,

wt + ∇ · F(w) = wt + ∇ ·
(̂
F(w) + F̃(w)

)
,

and use an IMEX time integration scheme [1]. This means that the sti� part F̃ is handled with

an implicit method and the non-sti� part F̂ with an explicit method. Then the main task is

to �nd a splitting which results in a stable, accurate and e�cient method. In the past years

several di�erent splittings have been developed but they may su�er from stability problems

and/or they are only designed for one special equation.
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In this talk we present the main ideas and steps in the development of the RS-IMEX split-

ting. This splitting is given by

F̃ = F(w(0) ) + F′(w(0) ) (w −w(0) ) and F̂ = F − F̃,

where w(0) = lim

ε→0

w or in other words w(0) corresponds to the solution of the limiting equa-

tion.

We apply the RS-IMEX splitting to di�erent singularly perturbed equations combined

with low and high order methods. Starting with a high order discretization of an ordinary

di�erential equation, we prove the AP property and also show numerical results, thereby ob-

serving possible problems with order reduction [2, 8]. Continuing with a �rst order approx-

imation of the isentropic Euler equation we prove the AP property and compare the splitting

with a given one from literature [4, 6]. Finally, we consider a high order discretization of the

isentropic Euler equations, prove again the AP property and show �rst numerical results [5].

The talk is closed with an overview on recent and future steps in the development of the

splitting.
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Abstract

In this work we investigate the use of implicit multi-stage multi-step Modi�ed Ex-
tended BDF (MEBDF) and linearly implicit Rosenbrock-type Runge-Kutta schemes for
the time integration of high-order Discontinuous Galerkin (DG) approximations of the
Navier-Stokes equations, focusing the attention on unsteady compressible low Mach
number �ows. We show that, by adopting the Matrix-Free approach, it is possible to
obtain a fourth-order accurate MEBDF method which is much less expensive than its
Matrix-Explicit counterpart, making the time integration algorithm even more robust
at low Mach numbers. We additionally employ a low-Mach number treatment of the
dissipative term of the Roe numerical �ux and we evaluate its impact on accuracy and
e�ciency of unsteady solutions obtained by using the eight-stage �fth-order accurate
Rosenbrock scheme. Numerical experiments are performed on 2D inviscid isentropic
vortex and laminar vortex shedding behind a circular cylinder and 3D ILES Taylor-Green
vortex test cases. The proposed time integration algorithms compare favorably with
the more commonly used �ve-stage fourth-order accurate Strong Stability Preserving
Runge-Kutta scheme in terms of accuracy and e�ciency. The numerical computations
also show that the preconditioned Roe scheme allows to obtain accurate solutions on
relatively coarse grids, although results indicate that e�ects of preconditioning reduce as
the polynomial degree of the DG approximation increases.

Key words: Discontinuous Galerkin, Low Mach, Matrix-Free, Modi�ed Extended Back-
ward Di�erentiation Formulae, Rosenbrock-type Runge-Kutta schemes
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1 Numerical results

We have studied two- and three-dimensional �uid �ow problems at low and moderate levels
of grid-induced and physics-induced sti�ness. The convection of an inviscid isentropic vortex
has been considered, for several free stream Mach numbers, to assess the e�ectiveness of the
Matrix-Free approximation [1] for the three-stage fourth-order accurate MEBDF scheme (MF-
MEBDF4) with respect to its Matrix-Explicit counterpart (ME-MEBDF4) [2]. The results of this
analysis are shown in �g. 1(a) for M∞ = 0.14. The potential of the proposed MF-MEBDF4
algorithm for e�cient long-time simulations is demonstrated by computing 35 laminar vortex
shedding behind a circular cylinder. For this test case M∞ = 0.1 while the Reynolds number
was varied from 100 to 400 to consider di�erent wake patterns. Fig. 1(b) shows, for Re = 100,
the time evolution of the di�erence between the lift coe�cient of a numerical exact solution
and the one computed by MF-MEBDF4 at the large time step size of ∆t = 2. Finally, ILES
of the Taylor-Green vortex at M = 0.1 and Re = 1600 have been performed using the eight-
stage �fth-order accurate Rosenbrock scheme (ROS5) [3] to investigate the in�uence of the
numerical �ux on the accuracy and the e�ciency of the solution. Figure 1(c) compares the
time evolution of the enstrophy computed by using the Explicit Riemann Solver (ERS) and
the preconditioned Roe numerical �ux (pRoe) [4] with a reference numerical solution.
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Figure 1: An overview of the results.
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Abstract

The non-dimensionalized Euler or Navier-Stokes equations yield, for a small refer-

ence Mach number, a singularly perturbed system of equations. This system can be ef-

�ciently solved by a decoupling of sti� and non-sti� terms, treating the latter ones ex-

plicitly and the former ones implicitly. However, not any seemingly reasonable splitting

yields a stable overall method. A criterion on how to choose a splitting that induces a

uniformly stable algorithm is therefore of utmost important.

In this work, we consider prototype equations and explain the challenges one en-

counters when trying to �nd stable splittings and how to circumvent them. Stable and

unstable splittings are discussed based on analytical and numerical investigations.

Key words: IMEX schemes, low Mach, �nite volumes

The non-dimensionalized Navier-Stokes equations - for simplicity the isentropic ones -

at low Mach number can be written as

ρt + ∇ · ρu = 0,

(ρu)t + ∇ · (ρu ⊗ u) +
1

ε2
∇p = 0,

for ρ density, u velocity and p ≡ p (ρ) pressure. The characteristic speeds in normal directions

of this equation are

λ0 = u · n, λ± = u · n ±
c

ε
.

We have therefore in the limit ε → 0 two completely di�erent behaviors of characteristic

speeds: One remains bounded, the others tend to in�nity, giving rise to a system of mixed

parabolic-hyperbolic type. If these waves were completely independent, one would treat the

O (1)–wave explicitly, and the other ones implicitly to obtain a stable algorithm. However

those waves are not independent of each other, and so one has to rely on a splitting of the

equation into ’sti�’ and ’nonsti�’ parts [3, 2] which are treated implicitly and explicitly, re-

spectively. This leads to so-called IMEX schemes [1].
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In this talk we will, based on the work in [4], consider the singularly disturbed linear
system of conservation laws

wt + ∇ · (Aεw ) = 0

for a givenAε . We will discuss unconditional stability of IMEX schemes for this equation. We

will show that for the one-dimensional equation, there exists an optimal splitting based on

characteristic decomposition; stability of this splitting is shown analytically. Also, we show

some unstable – though seemingly reasonable – splittings and discuss why they fail. Possible

extensions to nonlinear equations will be discussed.
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Abstract

We introduce the recent development based on the convex splitting method to solve

the gradient �ow considering the energy stability. We present the Convex Splitting

Runge–Kutta methods which provide a simple uni�ed framework. The core idea is the

combination of convex splitting methods and multi-stage implicit-explicit Runge–Kutta

methods. The proposed methods are high-order accurate in time and the energy stability

is completely proved when we consider the special design of implicit-explicit Runge–

Kutta tables, called a resemble condition. We present numerical experiments with the

Cahn–Hilliard equation which is a typical example for the gradient �ow to show the

numerical accuracy, stability, and e�ciency of the proposed methods.

Key words: Energy stability, High-order accuracy, Gradient �ow, Cahn–Hilliard equa-
tion, Implicit-explicit Runge–Kutta
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Abstract

In this talk results of the application of the RS-IMEX splitting, introduced by Kaiser

and Schütz [1], will be presented. After the presentation of the numerical framework

which is based on a high order nodal discontinuous Galerkin spectral element method,

investigations concerning e�ciency in the low Mach number limit of the isentropic Euler

equations will be shown. Furthermore, problems and solution strategies for the applica-

tion of the splitting to the full Euler equations will be discussed.

Key words: discontinuous Galerkin, IMEX splitting, weakly compressible Euler equations

1 Introduction

The RS-IMEX splitting for a general hyperbolic equation system in conservation form relies on

the linearization about an arbitrary reference state wr ef . For the hyperbolic equation system

∂tw + ∇ · F(w) = 0

the RS-IMEX splitting is de�ned by

F(w) = F̃(w) + F̂(w), (1)

where

F̃(w) = F(wr ef ) + F′(w) (w −wr ef ) and F̂ = F(w) − F̃(w).

An application to the non-dimensional isentropic Euler equations shows that the eigenvalues

of the sti� system with �ux F̃ are dependent on the Mach number ϵ and, therefore, are treated

implicitly. The eigenvalues of the non-sti� system with �ux F̂ are independent of the Mach

number and, therefore, are treated explicitly. Motivated by the asymptotics of the isentropic

Euler equations, the reference state can be chosen as the incompressible solution. Hence, the

required solver is tripartite: An explicit and an implicit solver for the two parts of the split

system and an incompressible solver for the reference solution. For spatial discretization a

high order nodal discontinuous Galerkin spectral element method according to Hindenlang

et al. [2] will be described. In the following, several aspects concerning the implicit temporal

discretization for the sti� and the incompressible part will be highlighted.

ACOMEN 2017

69



2 Application to isentropic Euler equations

For the evaluation of e�ciency and the demonstration of applicability in the low Mach num-

ber limit, two test cases are considered. For the two dimensional case, a traveling vortex is

an exact solution to the isentropic Euler equations. It has been applied and calculated for dif-

ferent spatial resolutions with a fully explicit, a fully implicit and with the RS-IMEX splitting.

Results suggest that for Mach numbers ϵ ≤ 10
−3...10−4 an e�ciency gain relating to the fully

explicit scheme can be obtained with the RS-IMEX splitting. Relating to the fully implicit

scheme, an e�ciency gain is obtained even for ϵ ≤ 10
−2

.

As a three dimensional test case the incompressible Taylor-Green-Vortex has been con-

sistently extended to the non-dimensional compressible isentropic Euler equations. With

these two di�erent initial data sets the RS-IMEX splitting is able to achieve similar decay of

the kinetic energy as a fully explicit scheme, both equipped with Lax-Friedrichs type Riemann

solvers. This demonstrates the ability of the RS-IMEX splitting to reproduce a complex three

dimensional behavior. Again, e�ciency is compared with a fully explicit and a fully implicit

scheme. Results show that a scaling in computational time ∝ 1

ϵ is obtained for the explicit

scheme. In contrary, the RS-IMEX has only a very slight increase in computational e�ort as

the Mach number decreases. For rather large Mach numbers (O (10−1)) the RS-IMEX is com-

putational more costly as more equations have to be solved. But, this is compensated for a

decreasing Mach number as the time step can be chosen independent of the Mach number.

3 Application to Euler Equations

When applying eq. (1) to the Euler equations for an ideal gas one can obtain complex eigen-

values for the non-sti� system for special cases. Therefore, the reference solution has to be

chosen carefully. We will show a simple choice for the reference solution which will prevent

the eigenvalues from becoming complex. The functionality will be demonstrated with a three

dimensional test case.

We will conclude with current results and an outlook.
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Abstract

In this talk we present a new approach to wildland forest �re spread modelling. We

evolve a surface curve, which represents the �re perimeter, i.e., the boundary between

burned and unburned fuel. Such curve is evolved as a projection to a horizontal plane and

is driven by our mathematical model. This mathematical model is based on the empirical

laws of the �re spread in�uenced by the fuel, wind, terrain slope and the shape of the �re

perimeter (geodesic and normal curvatures). For numerical solution we discretize the

intrinsic partial di�erential equation by a semi-implicit scheme in curvature term and

for the advective term we use so-called in�ow-implicit/out�ow-explicit approach which

guarantee solvability of linear systems by e�cient tridiagonal solver without any time

step restriction. Fast treatment of a topological changes (splitting and merging curves)

is shown on examples as well. We demonstrate the in�uence of the �re spread model

parameters on a testing topography and �nally, we reconstruct a real wildland �re.

Key words: curve evolution, surface curve, wildland �re modelling, geodesic curvature,

normal curvature

1 Introduction

Our model is built on the the so-called Lagrangian approach to evolution of a surface curve,

representing the �re perimeter. For the numerical computations we use its projection into a

planar curve, where we follow [3, 4].

Let us have a planar curve Γ, Γ : S1 → R2
, parametrized by u ∈ S1, where S1 is a

circle with unit length, thus u ∈ [0, 1] and Γ =
{
x(u); u ∈ S1

}
, where x(u) = (x (u) ,y (u)) is

position vector of the curve Γ for parameter u.

Such curve could represent the �re perimeter in the case of a �at terrain [1]. Therefore we

de�ne a surfaceM, that represents a local Earth topography. LetM be the two dimensional

surface in R3, M =
{
(x ,y,φ (x ,y)) ∈ R3, (x ,y) ∈ Ω

}
, represented by a graph of a function

φ : Ω ⊂ R2 → R de�ned in a domain Ω ⊂ R2. Let the curve G : S1 → R3, parametrized

by u ∈ S1, where S1 is a circle with unit length, thus u ∈ [0, 1], be a smooth surface curve

onM, that represents the �re perimeter on the surfaceM. Let us denote by p the unit arc-

length parametrization of the curve G: dp = Gdu, where G = |Gu | > 0. Furthermore,

we suppose a constraint between planar curve Γ and the surface curve G as follows G ={
(x (u) ,y (u) , z (u) = φ (x (u) ,y (u))) ∈ R3, (x (u) ,y (u)) ∈ Γ

}
, so that the curve Γ is a vertical

projection of the surface curve G.
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2 Mathematical �re spread model

The �re spread rate is expressed by an external force F , which includes heterogeneous burn-

ability, wind and terrain slope e�ects. Besides that, the local �re spread is in�uenced by the

shape of the �re perimeter. The geodesic curvature, Kд , smooths the curve. The curvature Kn
of the curve evolving in a valley (or on a ridge) can increase (or decrease) the normal velocity

V . Such evolution of curve G can be described by following formula

V = F
(
1 − δдKд + δnKn

)
, (1)

where δд is a weight of the geodesic curvature and δn is a weight of the normal curvature

in�uence to the �re spread. Such formula expresses the dominant role of the external force,

that can be accelerated or slowed down by the geodesic and normal curvatures.

3 Evolution of the projected planar curve

We split general motion of any point x of the curve Γ into the normal and tangential directions,

so we consider a general form of the planar curve evolution in the following form

xt = βN + αT, (2)

where β is a velocity in the normal direction N and α is a tangential velocity of the planar

curve Γ, designed for asymptotically uniform grid point redistribution [2].

To �nd the relationship between the normal velocity V in the tangent plane and the

projected curve Γ normal velocity β we follow [3]

V = Gt ·N = (xt ,yt ,φt (x ,y)) ·N = (xt , xt · ∇φ) ·N =

√
1 + |∇φ |2

1 + (∇φ · T)2
β . (3)
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Abstract

A new parametric class of semi-implicit numerical schemes for level set advection
equation is derived and analyzed. The accuracy and stability study is provided by partial
Lax-Wendro� procedure and numerical von Neumann stability analysis. The obtained
schemes are 2nd order accurate for variable velocity case when using dimension by di-
mension application of one-dimensional scheme for Cartesian grids. Extensions for un-
structured grids and nonlinear case are given and discussed. A so-called Corner Trans-
port Upwind semi-implicit scheme is presented that is 2nd order accurate for variable
velocity case, 3rd order accurate for constant velocity and unconditional stable accord-
ing to numerical stability analysis.

Key words: advection equation, higher order method, Cartesian grid, Lax-Wendro� pro-
cedure, von Neumann stability analysis

1 Introduction

In this work we present a new class of semi-implicit schemes for the numerical solution of
model advection equation

∂tu(x , t) + V · ∇u(x , t) = 0 , u(x , 0) = u0(x) .

This type of equation is a part of many mathematical models that are used in applications
of level set methods for tracking of interfaces, see e.g. [1, 2, 3]. Standard methods for nu-
merical solutions of advection equation are fully explicit schemes that have the well-known
CFL stability restriction on the choice of time step that depends on a length of grid step size.
Although such restriction is not considered as a disadvantage in general, it can be critical e.g.
if geometric boundaries are resolved only implicitly. The presence of so-called arbitrary small
cut cells can give locally arbitrary small grid size that results in an unrealistic CFL restriction
if no modi�cation of fully explicit numerical scheme is provided [2].

To resolve this issue some recent works [4, 5, 6] have proposed to use semi-implicit �nite
volume schemes for advection equation. The main idea is that the implicit time discretization
is used only at in�ow boundaries of computational cells [7]. In this talk we present semi-
implicit numerical methods for linear advection equation on Cartesian grids and discuss some
extensions for unstructured grids and nonlinear case.
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The novel tool in this study is partial Lax-Wendro� (or Cauchy-Kowalevski procedure)
that in its full form replaces the time derivatives of solution in Taylor series by the space
derivatives of solution obtained from the equation. In our approach we apply the steps of
such procedure only partially by allowing mixed time-space derivatives in Taylor series.

Using this procedure we derive a class of semi-implicit schemes following the approach of
fully explicitκ-scheme [8] that includes as particular cases several popular numerical methods
like Lax-Wendro� scheme. Such parametric formulation of numerical scheme gives an oppor-
tunity by special choices of parameter to improve the accuracy of scheme in special cases, to
adapt the scheme near boundaries, or to optimize the scheme using so-called limiters [8].

The one-dimensional semi-implicit κ-scheme is 2nd order accurate with unconditional
numerical stability for variable velocity and for all considered values of κ. A special (velo-
city dependent) choice of κ exists that gives 3rd order accuracy for constant velocity V. The
dimension by dimension extension of one dimensional semi-implicit κ-scheme for Cartesian
grids gives a 2nd order accurate scheme for variable velocity case when the analogous fully
explicit κ-scheme is only 1st order accurate.

Finally, we present a Corner Transport Upwind extension of semi-implicit κ-scheme by
extending its stencil using diagonal corner values. The resulting scheme is unconditionally
stable as indicated by numerical von Neumann stability analysis, it is 2nd order accurate for
variable velocity case and 3rd order accurate if the velocity is constant. We provide several
numerical experiments that illustrate these properties in computational practice.
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Abstract

A semi-implicit scheme of in�ow-based gradient (IBG) �nite volume method is pro-

posed to solve the G-equation model in premixed turbulent combustion. In order to

overcome small time step caused by CFL restriction in polyhedron mesh, a semi-implicit

method is used in IBG �nite volume method inspired by [3, 4]. Moreover, a conventional

approximation of turbulent transport term in the G-variance equation is reviewed and

compared with a mathematically correct tangential di�usion term. A sub-face tessella-

tion technique is introduced to prevent deteriorating the order of convergence in case

of distorted hexahedron cells. The implementation is very straightforward and easily

combined with a conventional �nite volume code. A higher order of convergence in

numerical examples on polyhedron meshes is illustrated for each velocity term in the

G-equation. Some numerical results in real engine cases are also presented.

Keywords: G-equationmodel, Level setmethod, Polyhedronmesh, Semi-implicit method,
Turbulent premixed combustion

MSC 2010: 65M08, 65N08, 35F25, 35F30

1 Introduction

We propose a semi-implicit scheme with in�ow-based gradient (IBG) �nite volume method to

numerically solve the G-equation model in premixed turbulent combustion. The governing

equations are described by the Favre mean G̃ and the �uctuation G ′′ of G �eld which is an

implicit function whose zero level set represents the �ame surface. The equations of G̃ and

G̃ ′′2 are commonly called by the G-equation and G-variance equation, respectively; more

detail formulations are in [6, 1]. Two equations are coupled and closed by the turbulent �ame

surface equations and the turbulent �ame speed formulations.

The basic form of theG-equation is a standard level set equation containing the advection,

normal speed, and mean curvature terms. Comparing to conventional algorithms to solve

level set equations on a polyhedron mesh, the proposed scheme has mainly three advantages.

The �rst is that it numerically shows higher order of convergence not only on a hexahedron

mesh but also on a a polyhedron mesh in 3D. The second is that the proposed method can be
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applicable to the simplest decomposed domains, that is, 1-ring face neighborhood structure,

for a parallel computation. The third is that a time step restriction caused by the CFL condition

is reduced by the proposed semi-implicit scheme. The �rst and second advantages are also

observed in a propagation in normal direction [2]. In the G-equation, we propose a semi-

implicit method to extend the algorithm in [2] with the advection and mean curvature terms

on a polyhedron mesh.

The G-variance equation has the same advection term as the G-equation and we apply

the same algorithm used in the G-equation. The G-variance equation also has a turbulent

transport term which does not allow turbulent di�usion normal to the mean �ame front. It

can be approximated as a tangential di�usion term. We present the di�erence between the

mathematically correct tangential di�usion term and the conventional one [5] in the combus-

tion community. Moreover, the reason why it is necessary to obtain a higher order scheme to

solve the G-equation is explained in a view of solving G-variance equation.

A higher order of convergence in numerical examples on polyhedron meshes is illus-

trated for each velocity term in the G-equation. A numerical comparison between di�erent

approximations of turbulent transport term in the G-variance equation is also presented.
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Abstract

The new automatic image segmentation algorithm extending conventional segment-
ation methods with an in�uence of prior knowledge of segmented shape is presented in
this talk. Algorithm is applied to Active Contours and also to Geodesic Active Contours
method. Original contributions are mainly: automatic solving of curve correspondence
problem, registration of planar curves and estimation of prior shape, based on the current
segmentation and computed eigenshapes calculated from atlas of shape patterns, using
Principal Component Analysis.

Key words: image segmentation, atlas, PCA, prior shape estimation
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Abstract

In this study, model reduction strategies on the distributed control of the Navier-

Stokes equations are studied. Proper Orthogonal Decomposition (POD) is used to reduce

the dimension of the both steady-state parametric and evolutionary models. Boundary

conditions are implemented by the Nitsche method weakly in the Mixed Finite Element

(MFE) technique. The Empirical Interpolation method (EIM) is applied to further reduce

the computational complexity. We provide numerical comparisons to demonstrate the

performance of these novel approaches.

Key words: Empirical interpolation, Model reduction, Navier-Stokes equations, Optimal
control, Proper orthogonal decomposition.

1 Introduction

Optimal control problems governed by the incompressible Navier-Stokes equations present a

computational challenge to scienti�c computing community. Although the mixed �nite ele-

ment (MFE) method [3] has the advantage of the knowledge about the pressure in the model,

the resulting computational model leads to a large system of equations which must be solved

at each step of the optimization algorithm. Therefore, solutions to these type of problems

need to be simpli�ed by some reduction techniques. In order to investigate the strategies

to be discussed, we consider the following distributed control problem for the Navier-Stokes

equations [1]

minimise J (y,u) =
1

2

| |y − zd | |
2

Q +
α

2

| |u | |2Q

subject to yt − ν∆y + (y · ∇)y + ∇p = u in Q

∇ · y = 0 in Q

y = д on ∂Ωi (1)

y = 0 on ∂Ωw

ν∂ηy − pη = 0 on ∂Ωo

y (0,x ) = y0 in Ω
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Here, Q = (0,T ) × Ω, Ω is a subset of R2, and ∂Ω = ∂Ωi ∪ ∂Ωw ∪ ∂Ωo . For the solution

of the Navier-Stokes equations and the corresponding adjoint problem we use the Taylor-

Hood �nite element pair P2-P1. Implementation of the non-homogenous Dirichlet boundary

condition is provided by the Nitsche method [4], which provides a straightforward application

of the condition in the continuous projection stage of the Proper Orthogonal Decomposition

(POD).

The model reduction in the control of Navier-Stokes equations are implemented by the

POD in both cases: steady and unsteady state solutions. In the �rst case, we consider the

parameter dependent steady problem and take the snapshots over the parameter’s range. In

the second case, since we consider the time- dependent problem, the snapshots are taken at

certain times within the domain. In both cases, the pressure is also taken into account, unlike

the general approach in literature, in the projection step.

The computational complexity of the nonlinear term in model reduction by the POD

still remains problematic. To overcome this, the Empirical Interpolation method (EIM) [2] is

applied to approximate the nonlinearities; this is also is in good harmony with the continuous

projection of the POD.

The reduction in the cost function is also achieved in a similar way by the projection to

the POD basis. The optimization is performed by the use of dol�n-adjoint [5] and IPOPT [6].

Also, FEniCS [7] for the automated solution of the partial di�erential equations is invoked in

this study.
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Abstract

The aim of this paper is to investigate on various methods of reducing the computa-

tional complexity, cost, and time for a �nite element model of an electrical machine with

a nonlinear magnetostatic �eld. A novel method is introduced in order to facilitate the

evaluation of the nonlinear problem.

Key words: interpolation, magnetostatic �eld, model order reduction, permanent magnet
synchronous machine

1 Introduction

Numerical methods, such as the �nite element method, along with modern computers fa-

cilitate the accurate �eld computation of various electrical machines models. Nevertheless,

when the model order is large, the computation becomes intensive in terms of computational

time and data storage capacity. Proper orthogonal decomposition combined with the discrete

empirical interpolation method (POD-DEIM) [1]-[3] is an e�cient tool to reduce the compu-

tational complexity of the model while maintaining the accuracy in an acceptable range.

We propose orthogonal interpolation method to reduce the computational complexity of

an electrical machine �nite element model. This method interpolates the nonlinear solutions

with the right-singular vectors of the snapshot matrix [4]. The right-singular vectors are

generated by the singular value decomposition (SVD) while decomposing the snapshot matrix

into the subset of orthogonal bases: the left-singular vectors U , the norm matrix Σ, and the

right-singular vectors VT
.

Assuming the snapshot matrix to represent correctly the system, the discrete projection

operator is determined withU and its most energetic norm are tracked with the norm matrix

Σ. The product of these two matrices remains unchanged for any input variables within

the range of the snapshot matrix. Although this property is fundamental to applied model

order reduction, the prediction of the system output is only dependent on the right-singular

vectors in V . Hence, each right-singular vector corresponds to a speci�c input set within the

snapshot matrix. In this orthogonal basis, any new input set can be expressed as a vector sum

of orthogonal vectors. Each component of this new vector can be independently interpolated

with the corresponding components of the right-singular vectors as a function of the original

input quantities (current, rotor angle...).
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2 Numerical application

The orthogonal interpolation method is applied to the �nite element model of an interior per-

manent magnet machine with 1379 nodes. The snapshot matrix, of size 1379× 5, is generated

with a greedy algorithm [5], where only the current source is of interest. The accuracy of

this method is proven by comparing its �ux density distribution to the �nite element model

reference and POD-DEIM reduced model (Fig. 1).

(a) (b)

Figure 1: Di�erent between the �ux density distributions obtained from the �nite element

reference model and (a) orthogonal interpolation method of the vector potential (b) POD-

DEIM (note the range di�erence). Shading: �ux density distribution.

The implementation of orthogonal interpolation method and POD-DEIM to a rotating

machine along with the accuracy and computational time comparison of these methods will

be presented in the full paper.
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Abstract

This document describes an acceleration technique that proved to be e�ective for the

segregated solution of the systems of partial di�erential equations that typically originate

from an approximate deterministic solution of the Boltzmann equation describing the

transport of neutrons. The technique is based on the projection of the problem on a

limited number of basis functions.

1 Introduction

The space, energy and time dependency of neutron population in nuclear reactors is governed

by a Boltzmann transport equation[1]. Such equation cannot normally be solved directly

based on deterministic methods. Approximations are then introduced for treating the angu-

lar distribution of neutrons[1]. The most typical approximations are an expansion in spherical

harmonics, a discretization of the solid angle (discrete ordinate methods), or the assumption of

an isotropic behavior of neutrons (di�usion approximation). In addition, the energy depend-

ency of neutrons is treated by grouping them into di�erent energy groups (multi-group ap-

proach). These approximations can dramatically increase the number of equations, for which

a coupled solution is normally obtained through Picard iteration. Several tens or hundreds

of iterations are normally required at each time step, which calls for the use of accelerators.

Predictors and other traditional acceleration techniques (e.g., Aitken) can e�ectively be used

to limit the number of iterations[2]. In this work, an acceleration technique is proposed based

on the projection of the problem on a limited number of orthogonal basis functions and on

the solution of the obtained reduced-order model [3].

2 Description of the problem

The angular and energy approximations of the neutron transport equation lead to a system of

linear partial di�erential equations that can be discretized using di�erent techniques to obtain

a set of matrix equations of the form:

Ai,pϕi,p
���n = bi,p

(
ϕ j,q

���n ,ϕi,p
���n−1
)

j , i, q , p (1)

At each time step n, one equation of the form of Eq. 1 will be obtained for each energy group

i, and for each direction or spherical harmonic p.
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3 A reduced order acceleration

The proposed acceleration technique is based on the Galerkin projection of the Eqs. 1 on

bases of orthogonal functions (one basis for equation). Such bases are gradually built during

the Picard iterations at each time step. In particular:

1. A set of full-order solutions ϕi,p
���0 is obtained at the �rst iteration in the time step and

used as a set of �rst basis functions Φi,p,0, one for each energy i and moment/direction

p ;

2. At each successive iteration, each of the Eqs. 1 is Galerkin projected on the correspond-

ing available basis Φi,p,k (initially made of one single function Φi,p,0 for each of the Eqs.

1), and the obtained reduced problem is solved;

3. After each reduced-order iteration, the initial residuals of the full-order problem are

evaluated and compared to those of previous iterations. When/if the residuals stabilize

(which means that the available bases are unsuited to achieve a higher level of accuracy),

a new set of full-order solutions is computed. These solutions are then orthogonalized

with respect to the available k basis functions Φi,p,k using a Gram-Schmidt procedure

in order to obtain the new basis functions Φi,p,k+1. A proper orthogonal decomposi-

tion can alternatively be selected for recalculating a basis based on the available basis

functions and on the new snapshots.

4. The iterations are continued and, if necessary, the orthogonal basis expanded, till the

required level of accuracy is achieved for the time step.

In this algorithm the full matrices Ai,p are built only once for each time step and their

projections over the respective bases are evaluated only when new functions are added to

the bases. For most iterations, only the reduced-order source terms and the resulting reduced

problems are solved for. This allows for extremely fast iterations.

Testing of such procedure for two representative cases [2] has shown a speed-up in the

range of 30% to 50%, comparable or better compared to a standard Aitken acceleration.

The proposed algorithm can also be extended by: 1) storing the obtained basis functions

for re-use in the following time steps, which can be highly e�ective in case small changes in

shape are expected; 2) storing the obtained basis functions for re-use in other simulations,

which can be of interest for repeated similar calculations; 3) gradually optimizing (training)

the set of obtained basis functions for covering a set of most frequent simulations. Although

these extensions proved to be extremely e�ective in some cases, their performance turned

out to be extremely problem (and user) dependent, which make them unsuited for inclusion

in production codes. Further investigation will be carried out in the future on this subject.

References

[1] A. Hébert, Applied Reactor Physics, Presses inter Polytechnique, 2009.

[2] C. Fiorina et al., Development and veri�cation of the neutron di�usion solver for the
GeN-Foam multi-physics platform, Ann. Nucl. En. 96 (2016) 212–222.

[3] A. Manzoni, A. �arteroni, G. Rozza, , Computational Reduction for Parametrized
PDEs: Strategies and Applications, Milan Journal of Mathematics 80 (2016) 283–309.

ACOMEN 2017

88



Book of abstracts of the 7th International Conference
on Advanced Computational Methods
in Engineering, ACOMEN 2017
18–22 September 2017.

O�-line/On-line approach based on POD and (D)EIM for the
Model Order Reduction of Low frequency Electromagnetic

devices based

T. Henneron1, L. Montier1,2, A. Pierquin1 and S. Clénet1

1 Univ. Lille, Centrale Lille, Arts et Metiers ParisTech, HEI, EA 2697 - L2EP, F-59000 Lille, France
2 EDF R&D, THEMIS, 1 Avenue du Général de Gaulle, 92140 Clamart, France

e-mails: thomas.henneron@univ-lille1.fr, laurent.montier@ensam.eu,

antoine.pierquin@univ-lille1.fr, stephane.clenet@lille.ensam.fr

Abstract

The Proper Orthogonal Decomposition (POD) combined with the (Discrete) Empir-

ical Interpolation Method ((D)EIM) can be used to build a reduced model and speed up

the solution of a Finite Element model. In order to de�ne a reduced model e�ective on

the full operating range of an electrical device, an O�ine/Online approach based on the

expertise of the engineer is proposed.

Key words: (Discrete) Empirical Interpolation Method, Low frequency electromagnetic
problem, Proper Orthogonal Decomposition, O�ine/Online approach.

1 Introduction

To model low frequency electromagnetic devices, the Finite Element (FE) method combined

with a time-stepping scheme is widely used to discretize Maxwell’s equations. Then, with a

�ne mesh and a small time step, the computational time of the large-scale system obtained

from the discretization of the Non-Linear Partial Di�erential Equations can be prohibitive.

To reduce the time of numerical simulations, Model Order Reduction methods have been

developed in the literature. In the case of non-linear problems, the Proper Orthogonal De-

composition [1] is combined with the (Discrete) Empirical Interpolation Method to keep an

e�ective reduced model with a good speed up [2]. These both approaches are based on the

snapshot technique which consists on solving the FE model for a set of given parameters. The

e�ciency of a reduced model depends on the choice of the snapshots. In order to build a re-

duced model e�ective on the full operating range of an electrical device, several methods can

be used. We propose an approach based on the expertise of the engineer. In electrical engin-

eering, typical tests are used to determine the parameters of equivalent circuit models which

describe the behavior of the device on the whole operating range. Then, the idea is to con-

sider the same approach to construct a reduced model. During the o�ine step, the snapshots

extracted from classical tests made usually by engineers to characterize an electromagnetic

device are concatenated. Then, a reduced basis is deduced in order to approximate the solu-

tion on the full operating range. On the online step, the reduced model can be used to study an
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electrical device coupled with an external electrical circuit for di�erent operating points. The

o�ine/online approach has been applied for several low frequency electromagnetic devices

like single and three phase transformers [3] and synchronous machine [4].

2 O�line/Online approach based on POD-(D)EIM model

By applying the POD-(D)EIM approach on a nonlinear Finite Element electromagnetic model,

the general form of the di�erential algebraic equations to solve can be written:

MrXr (t ) + Kr
dXr (t

dt
= Fr (t ) + Ψ

tGEIM (ΨXr (t )). (1)

Where Mr and Kr are square matrices of the reduced model and Fr (t ) is the source vector.

The size of these matrices and vector is much smaller than the size of the full FE model. Xr (t )
is the unknown vector of the reduced basis such as X (t ) = ΨXr (t ) with X (t ) the unknown

vector of the full FE model. To determine Ψ, the POD associated with the snapshot technique

is used. The nonlinearities of the full model are approximated in the vector GEIM by the

(Discrete) Empirical Interpolation Method. This approach is based on the computation of a

small number of nonlinear entries and on the interpolation of other terms. To build a reduced

model e�ective on the full operating range of an electrical device, an o�ine/online approach

is used. On the O�ine step, extrem operating points are simulated in order to extract the

solution and nonlinear vectors. From these snapshots, the reduced model is build in order to

study di�erent operating points. For a three phase transformer, we consider the device at no

load and in short circuit on the o�ine step. Then, the reduced model of the transformer is

built to study the evolution of the currents for di�erent load. The speed up is about 16.

(a) geometry and mesh (b) Primary currents with resistive load

Figure 1: Three phase transformer
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Abstract

The thermal dynamics in thermo-mechanical systems exhibits a much slower time
scale compared to the structural dynamics. We propose a method to reduce thermo-
mechanical structural models with a slowly varying temperature distribution. The reduc-
tion bases corresponding to a set a-priori-determined static temperature con�gurations
are interpolated over a non-compact Stiefel manifold [1] to obtain a basis for instant-
aneous temperature distribution. The method of multiple scales [2] is successively used
to construct a reduced-order model which adapts according to the instantaneous tem-
perature distribution of the structure, facilitating an e�cient reduction in the number of
unknowns.

Keywords: Basis interpolation, Method ofmultiple scales, Model order reduction, Thermo-
mechanical systems
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Abstract

We compare three reduced order modelling (ROM) techniques: the proper ortho-

gonal decomposition (POD), discrete empirical interpolation (DEIM) [2], and dynamical

mode decomposition (DMD) [1] to reaction di�usion equations in biology. The forma-

tion of patterns in reaction-di�usion equations require highly accurate solutions in space

and time and therefore require large computational time to reach the steady states. The

three reduced order methods are applied to the di�usive FitzHugh-Nagumo equation

[3] and the Brusselator model with cross di�usion [4]. DMD is an equation-free, data

driven method which extracts dynamically relevant information content without expli-

citly knowing the dynamical operator. We use DMD as an alternative method to DEIM

in order to approximate the nonlinear reaction terms. Application of the POD-DMD

Galerkin projection gives rise to a linear system of equations. The high �delity full order

solutions (FOMs) are obtained by the discontinuous Galerkin discretization in space and

semi-implicit Euler method in time. We compare the accuracy and CPU times of three re-

duced order model (ROM) solutions with the ones for FOM solutions. Numerical results

show that POD is the most accurate whereas POD-DMD is the fastest.

Key words: Cross di�usion, FitzHugh-Nagumo model, pattern formation, reduced order
modelling, Turing-Hopf bifurcation

1 Numeriacl results

The di�usive FitzHugh-Nagumo equation (FHNE) [3]

ut = d1∆u − u3 − u −v + κ

vt = d2∆v −v + u
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Figure 1: Labyrinth-like patterns for the FOM solutions

Figure 2: ROM solutions
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same increasing number of POD, DEIM and DMD basis functions.
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Abstract

In this paper, an e�cient approach to approximate functions in unbounded domain
is presented. The method is based on double exponential domain transformation within
spectral methods. The unbounded domain is mapped to bounded domain (0,1) using
double exponential (DE) transformation. The transformation maintains the orthogonal-
ity which simpli�es the calculations and increases computational e�ciency. Sine series
is chosen as the basis set to further improve the computational e�ciency. Di�erent func-
tions with wide range of decay rates are considered for approximation. The results and
the analyses show that the mapped sine series using DE transformation can be an e�-
cient high-order tool to handle challenging physical problems on unbounded domains.

Key words: double exponential transformation, unbounded domain, spectral method

1 Introduction

Many phenomena occurring in the nature decay smoothly with increasing distance from some
center. The physical domain of such problems extends towards in�nities [1]. To tackle such
problems numerically, three approaches have been used generally, namely domain truncation,
using functions which are intrinsic to unbounded domain and domain mapping [1]. In domain
truncation, the unbounded domain is chopped to convert it to a bounded domain. However,
this introduces a truncation error. The second approach, which involves the use of functions
which extend to in�nites, fails to cover a wide range of decay rates. The third approach which
is also the focus of this paper involves the domain mapping. This involves transforming the
unbounded domain into bounded one using some coordinate transformation [1, 2].

It this work, we exploit the application of DE transformation for the e�cient approxim-
ation of functions in unbounded domain. The DE transformation is given by:

x(u) = sinh−1(tanh−1(2u − 1)) (1)

where u ∈ (0, 1) and x ∈ (−∞,∞). This is a particular case of mapping, where the unbounded
domain is mapped to (0,1). The unbounded domain can be mapped to any bounded domain
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(a,b) [3]. The choice of the domain (0,1) enables the use of simple basis set like sine series,
which makes the analytical integrations possible and increases the computational e�ciency.
Furthermore, in this work, we have proposed a mapped basis set which maintains the or-
thogonality in both real and computational space. Maintaining orthogonality simpli�es the
calculations signi�cantly, and hence increases the computational e�ciency.

The proposed method is implemented to approximate di�erent decaying functions with
wide range of decay rates. In the analyses, we compare the proposed method with the glob-
ally converging Hermite polynomials. The results show that the proposed method is able to
approximate a wide range of decay rates e�ciently and accurately.

2 Proposed Method

If F (x) is the function to be approximated, We propose a mapped basis set of the following
form:

F (x) ≈
N∑
k=0

ak sin(kπu(x))µ(u(x)) (2)

where
ak =

∫ ∞

−∞
F (x)Pk (u(x))µ(u(x))dx

=
1
2

∫ 1

0

sin(kπu)F (x(u))
µ(u) du

, (3)

and µ(u) is the auxiliary function to maintain the orthogonality and it follows directly from
x(u) where

µ(u) =
√

2
dx
du

(4)

For the analysis of the results, we assess the approximation error vs. the number of basis
used. We also analyze the range of decay rates that can be approximated to an accuracy for
a �xed number of basis used. All the results are compared with the Hermite approximation.
The results show that the DE transformation is e�cient, accurate and outperforms Hermite
approximation in all the cases.
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Abstract

Multirate partial di�erential equations (MPDEs) are a relatively new concept to deal
with multirate phenomena. This abstract heads for the simulation of a low-frequency
energy application with pulsed excitation, namely a buck converter, using MPDEs. A
linear �eld-circuit coupled problem described in a single equation system is considered.
The di�erential algebraic equations are rewritten as MPDEs and e�ciently solved by a
Galerkin ansatz and time discretization.

Key words: Multirate partial di�erential equations, Energy applications

1 Multirate formulation and solution
Consider the example of a simpli�ed buck converter as in [2]. Its solution consists of fast
periodically varying ripples and a slowly varying envelope as depicted in Fig. 1. This makes
conventional time discretization ine�cient as many steps are necessary to properly resolve
the solution. The model of the buck converter consists of a circuit part and a �nite element
model of the coil which are strongly coupled, i.e., described in a single system of di�erential
algebraic equations (DAEs) with dimension 15791 [3]. The DAEs with matrices A and B are
equivalently rewritten as multirate partial di�erential equations (MPDEs) [1] by splitting the
time into two time scales of di�erent rate t1 and t2

A
(
∂x̂
∂t1
+
∂x̂
∂t2

)
+ B x̂(t1, t2) = ĉ(t1, t2) . (1)

If ĉ(t , t ) = c(t ) is satis�ed, the solution of the DAEs and MPDEs relate by x(t ) = x̂(t , t ), where
c(t ) and x(t ) are the excitation and solution of the DAEs, respectively. To solve the MPDEs,
the solution is expanded into periodic basis functions pk (τ ) and coe�cients w j,k (t1)

x̂ j (t1, t2) =

Np∑
k=0

pk (τ )w j,k (t1) with τ =
t2
Ts

mod 1. (2)
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The time scale t2 is associated with the fast periodically varying ripples, the time scale t1 with
the slowly varying envelope. Applying a Galerkin ansatz with respect to t2, the MPDEs (1)
reduce to DAEs in t1 whose unknowns are the coe�cients w j,k (t1). These DAEs exhibit a
much slower dynamic than the original ones as the fast periodically varying ripples are taken
into account by the Galerkin ansatz. Therefore less time steps are needed for the solution.
A drawback is the larger equation systems. As basis pk (τ ), the problem speci�c pulse width
modulation (PWM) basis functions as introduced by Gyselinck et al. [2] are used.

2 Numerical results
The relative discrete `2-error of the MPDE solution towards a reference solution is calculated.
The reference solution is obtained by conventional time discretization with �ne rel./abs. tol-
erance of 10−6. The simulation time interval is �xed to t ∈ [0, 10]ms. For the MPDE approach,
the number of basis functions and rel./abs. tolerance for time discretization are Np = 2 and
tol = 10−2, respectively. Conventional time discretization (backward euler) is applied to the
original DAE such that the same `2-error compared to the reference solution is obtained. The
number of solved linear equation systems (ntd for conventional time discretization, nmpde for
MPDE approach) are compared, see Fig. 2. Increasing fs, more ripples have to be resolved
which leads to higher ntd in conventional time discretization while nmpde stays almost con-
stant. However, the actual e�ciency of the MPDE approach depends on the e�ciency of the
linear solver and the switching frequency fs.
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Abstract

Microwave heating relies on internal thermal sources which make it a good candidate

for an alternate composite process. In this paper, an electromagnetic solver is proposed.

Solving the problem in a laminated composite material requires a high degree of discret-

ization in the thickness direction which is made possible by introducing the in-plane-out-

of-plane decomposition approach using the Proper Generalized Decomposition (PGD).

Key words: Composite, microwave heating, Proper Generalized Decomposition

1 Introduction

To reduce long production cylce time of composite material, the microwave (MW) technology

is considered by industrials [1] as volumetric heating saves time and energy. Today, the main

drawback is that the physics involved during the process are not entirely understood and

controlled. The challenge when simulating the propagation of the MW �eld in a laminated

composite material concerns the need for a high-resolution in the thickness. In such materials,

the in-plane dimensions are order of magnitude higher than the thickness one (typical aspect

of ratio of tens of thousands). The use of the in-plane-out-of-plane separated representation

within the PGD framework is an appealing and valuable route for solving 3D models while

having a computational complexity of standard 2D models [2].

2 Electromagnetic Problem

In order to proceed with the in-plane-out-of-plane separated representation, we use a stand-

ard nodal formulation that is regularized in order to avoid spurious solutions [3]. This for-

mulation for the electric �eld (1) is derived from the Maxwell equations with the Dirichlet

boundary conditions associated on the whole domain boundary:

5 × (
1

µ
5 ×E) − ϵ∗ (

1

µϵ∗ϵ∗
5 ·(ϵ∗E)) − ω2ϵ∗E = 0 with n × E = Et , (1)
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where µ, ϵ and σ are the permeability, the permittivity and the conductivity of the material

and Et is the prescribed electric �eld assumed known. The weak formulation associated is

solved using the in-plane-out-of-plane separated representation within the PGD framework

which allows writing the electric �eld in the 3D separated form:

E(x ,y, z) ≈
N∑
i=1

Xi (x ,y) ◦ Zi (z),

where the ◦ denotes the Hadamard rpoduct. Thus, the 3D solution is obtained from a set of

N 2D and 1D problems. Therefore, we can reach extremely re�ned levels of resolution along

the thickness direction (that has a characteristic size of few millimeters) without having any

impact on the in-plane representation, and then in the computational e�ciency [4].

3 Numerical Results

We consider a composite part placed in a wave-transparent ceramic mold (�gure 1 (a)). The

composite material is made of 20 unidirectionnal layers. Material properties of the mold are

σ = 0.008, ϵ = 4ϵ0 , µ = µ0 ,ϵ0 and µ0 being the permeability and permittivity of the vacuum

and the 0-unidirectional layer is characterised by tensors which diagonales are σ = [100 −

1 − 1]S/m, ϵ = [90 − 10 − 10]ϵ0, µ = µ0. The dirichlet boundary conditions applied are

Ex = Ey = cos (2πnx ) and Ez = cos (2πny) with n = 10.The mesh is composed of 1000 Q4

elements in the plane and 980 1D linear elements in the thickness. Figure 1 (right) highlights

the amplitude decrease of the electric �eld when it propagates through the composite part.

(a) Test case geometry (b) Electric �eld amplitude through the thick-

ness along (x
middle

,y
middle

, z)

Figure 1: Results.
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Abstract

Immunotherapy is one of the future treatment that can be used in most cases of can-
cer. The cervical cancer is one of the malignant cancer that triggers by a virus, which is
known as Human Papilloma Virus (HPV). The virus prevents some genes, e.g., p53 and
pRb, which control the cell division and apoptosis to be activated. In this paper we con-
sider the interactions between the cancer cells population, the e�ector cells population
that is a part of the immune system, and IL-2 compounds which is a cytokine that can
be used to stimulate the e�ector cells. The interactions between the cancer cells, e�ector
cells, and IL-2 compounds do not only depend on the time but also the position in the
cervix. Therefore, we add the reaction-di�usion term in our system to represent those
situations. In this paper we consider the numerical computation of such system that
show the e�ects of the immunotherapy on the tissues due to the time and the position.
In this case we also consider the equilibrium condition that shows the long time behavior
of the system.

Key words: cervical cancer, numerical computation, limit cycle, reaction-di�usion

Introduction and The Problem Formulation

Cervical cancer is one of the most dangerous disease which is mostly caused by the Human
Papilloma Virus (HPV). The virus is a family of the retrovirus DNA which consist some protein
which has speci�c role in the infection and replication, [5]. The virus infection triggers the
defect of the tissues called a lesion and plays an important role on the metastases of the
diseases.

The mathematical model that show the dynamics of the cervical cancer on the tissues
which shows the changes of the metastases behavior and the boundary of the pre-cancerous
cells population, was studied in [1, 2]. In sub-cellular level, the cancer infections are mainly

ACOMEN 2017

103



caused by the mutation of the genes which is represented by the shifting behavior of the
enzymes. There are some enzymes that can be used as the indicators of the mutation, e.g.
p53, pRb, EBNA1, etc, see [3]. For the cervical cancer case, the HPV inactivates the enzymes
p53 and pRb that increase the immortality and the proliferation of the cells.

The immunotherapy model of the cervical cancer that involves the interaction between
the cancer cells, the e�ector cells and the IL-2 compound including the local and the global
stability of the equilibria has been done in [7, 8]. In [4], the authors consider the periodic
stimulation of the e�ector cells by the IL-2 compounds by adding a periodic perturbation in
the system.

In cervical cancer case, the growth direction of the e�ector cells, the cancer cells, and
the IL-2 compounds depend on the weakest parts of the cells in the tissue. Following the
results in [6], we extend the system on [7, 8, 4] by adding the reaction-di�usion terms on
each components.

Our system is a three dimensional system of partial di�erential equation. We separate the
cells populations into three parts, those are the Cancer cells (T ), the E�ector cells (E) as parts
of the immune system, and the IL-2 compounds (IL) which is cytokines that stimulate the
E�ector cells. All of them are the functions with respect to the the time and the position. The
immunotherapy in our system is represented by an external input on IL-2 compounds. We
apply the numerical bifurcation analysis to study the existence and stability conditions of the
equilibrium and the Runge-Kutta order 4 to determine the equilibria and the limit cycle of the
system. The numerical simulation of the system is done by the PDEX5 toolbox of MATLAB.
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Abstract

In spring network models of red blood cells, the macroscopic elasticity of the mem-

brane is determined by microscopic properties of individual components of the network.

For example, the sti�ness of individual springs forming triangular mesh in�uences the

Young modulus of the modelled membrane. Recently, a new approach has been derived

for area conservation modulus of a spring network model that is force-free and torque-

free. We address this approach and derive the relation between network sti�ness coe�-

cients and continuum mechanical membrane properties, such as shear modulus and area

compression modulus.

Key words: computational micro�uidics, cell model, elasticity

1 Elasticity in spring network models

We consider a spring network model of red blood cell introduced in [1]. Model is based

on a triangular mesh covering the surface of the cell. The surface is discretized with mesh

points. The mechano-elastic properties of the membrane are represented with di�erent types

of bonds between neighboring mesh points generating repulsive or attractive forces. This

way, the deformation of the object changes the relaxed distances between the mesh points

and this induces forces acting against the change in the corresponding mesh points. These

forces cause the mesh points to move in space and thus the temporal changes of the cell’s

shape are computed from the Newton’s equations of motion given the deformation forces for

each mesh point.

The de�nition of forces includes �ve di�erent expressions mimicking the following elastic

moduli of the membrane: stretching, bending, local area, global area and volume preservation.

Concrete expressions can be found in [2]. In the original version of the local area modulus,

forces in each mesh triangleABC act in the direction towards its centroidT and have the same

magnitude for each triangle vertex. This setting is however neither force-free nor torque-free.

Recently, in [3] the authors have adapted the expression for the local area modulus in

order to preserve force-free and torque-free condition. For magnitude of force applied to

vertex A of triangle ABC , they have suggested to use the following expression

F (A) = kal
|TA|

|TA|2 + |TB |2 + |TC |2
(S − S0), (1)

where kal is the sti�ness coe�cient, S is the current area of the triangle and S0 is the area of

the triangle in a relaxed state.
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2 Relation between model parameters and bulk properties

Experimental measurements performed on biological membranes provide their macroscopic

properties such as shear modulus µ0, Young modulus E, or area compression modulus KA
[4, 5]. In the case of simple spring networks where only linear stretching modulus is active,

the relation between stretching sti�ness coe�cient ks and bulk quantities is given by [6]

KA =
√
3ks/2, µ0 =

√
3ks/4.

The previous results are valid for six-fold regular networks.

In the case of more complex networks, such relations are more complicated. In our work

we consider linear stretching and local area modulus computed from (1) to be the only two

elastic moduli. In that case we show that relations are

KA =
√
3ks/2 + kal/2, µ0 =

√
3ks/4.

Theoretical computations will be supported by computational simulations.
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Abstract

Force-based models of elastic cells should be force- and torque-free. That is, in the

absence of external stimuli, a relaxed cell should neither travel in space (force-free) nor

rotate (torque-free). These properties are easier to achieve for local elastic forces such

as local area conservation and more di�cult for global forces such as surface or global

volume conservation. We propose the force- and torque-free approaches to the global

forces and discuss the tradeo� between exact ful�lment of these conditions and compu-

tational time and issues that arise from ful�lling the force-free condition.

Key words: computational micro�uidics, cell model, elasticity, force-free, torque-free

1 Global forces in modeling of elastic cells

In modeling of elastic objects such as red blood cells, several elastic moduli are involved:

stretching, bending, local area conservation, global area conservation and volume conserva-

tion [1]. In this work we focus on the last two and discuss the possibilities for de�ning them

force- and torque-free so that they do not cause movement or rotation of the objects in relaxed

state.

While the local elastic forces work to restore the local shape of the membrane, it is ne-

cessary to include global forces that conserve total surface and volume of the object. This

can be done for example using forces of the following format for global area and volume

conservation [2]:

Faд (A) = kaд
∆S

S0
tA Fv (A) = kv∆VSABCnABC

where kaд is the global area coe�cient, S0 is the relaxed area of the whole object, ∆S = S −S0

is the deviation from this area and tA is the unit vector pointing from the centroid of the

triangleABC to the vertexA. Analogous forces are acting on nodes B andC . For volume force

Fv , kv is the elastic coe�cient, SABC is the current area of triangle ABC , ∆V is the di�erence

between current volume and volume in the relaxed state and nABC is the unit normal vector

to the plane ABC .

Note the direction of these forces. In each triangle, the global area force acts in the triangle

plane, while the volume force acts in the direction perpendicular to the triangle plane. These

global elastic moduli are neither force- nor torque-free, which can be demonstrated by both

analytical calculation and simulation of cell without external stimuli, that exhibits very slow

drifting and rotation. In other models, e.g. [3], we also see volume forces that are not force-

free.
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2 Consequences of force-free global area and volume

In [4], we have proposed a force-free and torque-free local area modulus and ideally, we would

like to apply the same approach to the global forces as well:

Faд (A) = kaд · SABC ·
∆S

|tA |2 + |tB |2 + |tC |2
tA Fv (Ai ) = kv ·

∆V∑n
j=1 |tj |2

ti

where kaд is the global area coe�cient, SABC is the area of triangle ABC (we weigh the forces

by this area to avoid degeneration of the mesh), ∆S is the deviation of current surface area

from relaxed surface area and tA =
−→
AT , where T is the centroid of the triangle ABC . For

volume force, kv is the volume coe�cient, ∆V is the di�erence between current volume and

volume in the relaxed state, ti =
−−→
AiT , T is the centroid of the object, Ai is a point of the mesh

and the sum in the denominator of Fv runs over all discretisation points of the object.

These global forces are force- and torque- free, however, the practical implementation

of this approach comes at a price of three loops over the nodes in every timestep: one to

compute the current volume and current location of the centroid, one to calculate the sum

of distances of the current nodes positions and the centroid and one to calculate the actual

forces. (Note that in some cases it might be useful to use a street-�ghting version of force-free

volume force: calculate the resultant of all volume forces Ftotalv =
∑
Fv applied in individual

nodes and apply additional − 1

nF
total
v in every node.)

Moreover, the volume forces now generally do not act in the directions perpendicular to

the individual triangles. This means that the volume force can be split into the perpendicular

and tangential portions and under certain circumstances, the tangential part may interfere

with the in-plane acting global volume force. We will show examples, in which these forces

act against each other - one is trying to decrease the size of the mesh triangle and the other

to increase it. We will also discuss the implications for spring-network modeling.
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Abstract

Understanding characteristic of the air�ow behavior in the human respiratory tract
is necessary for treatment of respiratory diseases. For this purpose, this paper aim to
propose a three-dimensional mathematical model to describe the air�ow in the human
upper respiratory tract. The governing equations are composed of Navier-Stokes equa-
tions and the continuity equation. As the air�ow is driven by the oscillating pressure
gradient within the pulmonary, therefore one side of boundaries is set to be a periodic
pressure function. Under the assumption that the air�ow is axially symmetric, the gov-
erning equations are presented in the cylindrical coordinates system. Due to the re-
quirement of high computing resource of a numerical method, we presented an e�cient
analytical method based on the Fourier-Bessel series form. The obtained air�ow �eld is
simulated on a three-dimensional geometry of a human respiratory tract. The simulated
characteristic of the air�ow show a good agreement to the fact of air�ow behavior in
the human airway ,the previous researches and other related publications. Key words:

human upper respiratory, three-dimensional mathematical model, Navier-Stokes equations,
analytical solution, Fourier-Bessel series.
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Abstract

The Stokes problem with the stick-slip boundary condition is solved by the mixed
�nite element method combined with the TFETI domain decomposition technique. An
interior point method for the minimization subject to box and equality constraints is used
as the main solver.

Key words: TFETI method, interior point method, stick-slip condition, Stokes problem.

1 Introduction

The contribution deals with the Stokes �ow with the stick-slip boundary conditions. We
consider the case when the slip of a �uid along the wall may occur only when the shear stress
attains certain bound which is given a-priori and does not depend on the solution itself. The
mathematical model of the velocity-pressure formulation leads to the so-called variational
inequality of the second kind. This problem exhibits many attractive applications; see [9, 2]
and references therein.

Our approximation uses the mixed �nite element method based on the P1-bubble/P1 �-
nite elements [1]. The sti�ness matrices are generated by a vectorized code [5]. The �nite
element approximation is combined with the TFETI domain decomposition method [3]. The
dual algebraic problem arising after the elimination of the velocity and the pressure com-
ponents leads to the minimization of the quadratic, strictly convex function in terms of three
Lagrange multipliers representing the gluing condition, the impermeability condition on the
slip part of the boundary and the stick-slip condition. The third Lagrange multiplier is subject
to box constraints and, due to the use of the TFETI method, all Lagrange multipliers have to
satisfy linear equality constraints. The solution is computed by a path-following variant of the
interior-point method [7] adapted for box and linear equality constraints [8]. Highly prom-
ising numerical experiments of the path-following algorithm for non-decomposed problems
has been presented in [6].

The main idea of the algorithm consists on the use of the damped Newton method whose
iterations lay in a neighborhood of a central path leading to the solution. The inner subprob-
lems are given by linear systems with a block structure. These systems are reduced using the
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Schur complement method so that a variant of the preconditioned projected conjugate gradi-
ent method (PPCGM) may be used. The PPCGM generates iterations in a subspace determined
by the kernel of the matrix representing the equality constraints. An appropriate precondi-
tioner eliminates ill conditioning of the reduced systems that arises typically in interior point
methods when the iterations approach the solution. For that, we use the oblique projector.
Our numerical experiments are performed by the decomposed problems taken from [6]. The
�rst results computed with the TFETI active set strategy algorithm and a brief description
of the simpli�ed version of the TFETI path-following algorithm could be found in [4]. The
main issue of this contribution is an experimental assessments of preconditioning variants
that arise from the spectral analysis of the preconditioning technique [8].
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Abstract

The present work is intended to introduce parallel approach to mathematical mod-

eling of water treatment from iron impurities. We consider process of removing iron

ions and iron oxides from water by means of a magnetic �eld. The 2D and 3D variants

of this problem are studied. The model problem is considered in approximation of an

incompressible �uid �ow in a channel with rectangular cross section.The parallel code is

realized on hybrid computer systems with Graphical Processing Units, classical micro-

processors (Central Processing Units) and VPU (Video Processing Units). The proposed

method integrates domain decomposition technique, parallel implementation via MPI

technology, OpenMP and CUDA.

Key words: Mathematical modeling, numerical methods, parallel algorithms, water
treatment processes.

Introduction

In this work, the in�uence of the magnetic �eld on the water puri�cation is studied. Ex-

periments show that the magnetic �eld increases the speed of chemical processes and the

crystallization of dissolved substances in water, intensi�es adsorption processes. It acceler-

ates the coagulation of impurities and the precipitation of them. The in�uence of a magnetic

�eld on water depends on the water composition, the magnetic �eld strength, velocity of

water movement, the time of e�ect and other factors [1], [2].

In our study, we consider problem of capturing the iron ions and iron salts under magnetic

processing of water �ow in a nonmetallic pipe. Magneto-hydrodynamic model is formed. The

model takes into account the direct e�ect of magnetic induction on the stream of water. In

this case, currents of iron ions and/or iron salt ions appear and generate secondary electric

�eld. We should consider this electrical �eld because it can substantially change the evolution

of the impurity.

The paper deals with the two-dimensional plane-parallel �ow. The �ow is formed in the

middle section of rectangular tube with a strong anisotropy of sides. The magnetic �eld acts

in a transverse direction of �ow and generates circular motions in this section of the tube. In

this situation, the �ow pattern is similar to the two-dimensional model and can be considered

as an initial approximation for solving three-dimensional problem [3], [4]. The isothermal
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laminar �uid �ow is studied to simplify the analysis. The drift-di�usion approximation is

used to describe the behavior of the �ne dispersible impurities [5], [6].

Such processing is relevant to many industries. It is applied for heat energetics, agricul-

ture, construction, medicine and others.
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Abstract

The congenital bicuspid aortic valve (BAV) disease leads to several complications,

one of those being aortic dilation (AD). Di�erent BAV phenotypes are correlated with di-

verse blood �ow patterns, causing multiple AD phenotypes. A three dimensional realistic

�uid-structure interaction (FSI) model of the aorta where di�erent rigid BAV cusps are

included is used to study such correlations. These cusps are built from patient-speci�c

(PS) measures. We show that the application of such methodology can provide relev-

ant results for these PS cases of disease: abnormal blood �ow correlated with elevated

patterns of wall shear stress (WSS) is observed.

Key words: aortic dilation, bicuspid aortic valve, �uid-structure interaction, patient-
speci�c modeling

1 Introduction

BAV is a congenital heart malformation with great phenotypic heterogeneity, characterized

either by the existence of two cusps instead of three, or by fusion of two of the cusps (being

functionally bicuspid). It causes marked alterations on ascending aortic blood �ow, and is

associated with diverse complications such as AD [1]. BAV computational modeling with

PS valve measurements is a crucial step towards a better understanding of this disease and

related aortopathies. This work is devoted to the study of the in�uence of several phenotypes

of BAV on aortic blood �ow and its correlation with AD in PS geometries.

2 Methodology

The aortic lumen is reconstructed from PS computed tomography images and the aortic wall

is virtually created using an open-source tool [2]. The BAV cusps are built in a peak systolic

con�guration using SOLIDWORKS. For its construction, PS measurements such as the shape

of the BAV ori�ce or the length of the BAV raphe are retrieved from echocardiographic images.

An FSI approach is employed using the Arbitrary Lagrangian-Eulerian formulation [3].

Blood �ow is governed by the Navier-Stokes equations that characterize Newtonian and in-

compressible �uids. The aortic wall tissue is assumed as a linear, elastic and isotropic material.
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At the inlet, PS average velocity curves retrieved from Continuous Doppler echocardi-

ography are applied. At the outlets, we impose linear absorbing boundary conditions [4] to

avert spurious back�ow due to the truncation of the computational domain.

Since the main goal of the work is to observe the in�uence of its shape in blood �ow

during systole, the displacement of the valve cusps is constrained in all directions and these

are considered rigid.

To perform numerical simulations, a �nite element method is employed using the soft-

ware COMSOL Multiphysics through a P1-P1 stabilized discretization for the �uid and P2 for

the solid.

3 Results

Figure 1 shows relevant hemodynamic results at peak systole for a PS BAV case.

(a) Velocity �eld (m/s) (b) WSS - wall (dyn/cm
2
) (c) WSS - cusps (dyn/cm

2
)

Figure 1: Hemodynamic indicators obtained on a PS aortic complex for a BAV with two cusps

without a raphe.

One can observe that a skewed high velocity blood jet (Figure 1(a)) hits the outer ascend-

ing aortic wall, subjecting this area to abnormally elevated WSS (Figure 1(b)). This issue can

act as a maintaining AD factor in these patients. Alternatively, the WSS on the BAV lea�ets

(Figure 1(c)) is higher near the valve ori�ce, suggesting that the �ow passage through the

speci�c shape of these cusps will cause greater degeneration near the free edges.
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MS 6 Novel trends and challenges in electromagnetic full-wave modelling

Organiser: Hendrik Rogier

Description: In the last decades, we have seen tremendous ad-
vances in electromagnetic full-wave modelling techniques, up to
such a scale that commercial electromagnetic field solvers based
on integral equations, finite elements and finite differences have
become fully integrated as computer-aided engineering tools in
most design processes of complex electronic systems. Yet, very
complex and very large problems still represent major obsta-
cles for mainstream full-wave simulators, making the analysis
of such structures highly time consuming and their computer-
aided optimization impossible. This mini-symposium provides
an overview of the latest developments in electromagnetic field
modelling research towards even more efficient and accurate
solvers for large intricate simulation domains. Advanced pre-
conditioning methods that avoid dense mesh and low frequency
breakdown are presented, as well as local grid refinement tech-
niques. In addition, the incorporation of stochastic frameworks
into full-wave electromagnetic field solvers is discussed, includ-
ing some pertinent design examples in the context of wearable
antenna design.
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Abstract

The Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) is a widely used integral

equation for simulating radiation and scattering from penetrable objects. This formula-

tion, however, is plagued from mesh re�nement and low-frequency ill-conditioning. Ex-

isting techniques for handling these problems, however, su�er from very low-frequency

numerical cancellations or they require the detection of global loops. This work presents

a new Calderon-like strategy for the PMCHWT which, leveraging on the quasi-Helmholtz

projectors, solves both frequency and re�nement ill-conditioning without detecting global

loops. Moreover the technique is immune from very low-frequency numerical cancel-

lations. Numerical results con�rms all theoretical developments and show the practical

impact of the new scheme.

Key words: Calderon preconditioning, Penetrable scatterers, PMCHWT integral equa-
tion.

1 Sketch of the formulation and numerical results

The PMCHWT integral equation reads(
Tk + Tk ′/ηr − (Kk +Kk ′ )
Kk +Kk ′ Tk + ηrTk ′

) (
M (r )
J (r )

)
= −

(
ηkn̂r ×H i (r )
n̂r × Ei (r )

)
where for the de�nitions of the operators we refer the reader to [1] The �rst element of

the formulation we propose follows from a Galerkin discretization of the equation via ze-

roth order Raviart-Thomas elements. The quasi helmholtz projectors are de�ned as in [1]

as PΣ = Σ
(
ΣT Σ

)+
ΣT

and PΛH = I − PΣ
and the associated rescaling operators are M =

1√
k/k0

PΛH + i
√
k/k0PΣ

and M−1 =
√
k/k0PΛH + 1

i
√
k/k0

PΣ
. This results in the following fre-

quency preconditioned PMCHWT integral equation(
Q′jm Q′j j
Q′mm Q′mj

) (
x
y

)
= −

(
ηkM

−1G−1hi

M−1G−1ei

)
(1)

ACOMEN 2017

119



10
−40

10
−10

10
−3

10
3
10

6

10
0

10
10

10
20

10
30

10
40

Frequency

C
o
n
d
it
io

n
 N

u
m

b
e
r

 

 

Standard PMCHWT
Loop−Star PMCHWT
Calderon PMCHWT
This work

(a) Torus: Condition number w.r.t frequency.

0.5 1 1.5 2 2.5 3

10
0

10
5

10
10

1/h

C
o
n
d
it
io

n
 N

u
m

b
e
r

 

 

Standard PMCHWT
Loop−Star PMCHWT
Calderon PMCHWT
This work

(b) Torus: Condition Number of system matrix w.r.t.

discretization density at 1 MHz.

Figure 1: Numerical results

where Q′α β = M
−1G−1Qα βM with α =m, j and β =m, j and where the blocks Qα,β represent

the Galerking matrix blocks associated to (1). A similar strategy is possible on the dual mesh,

resulting in the following dual qH-PMCHWT(
Q′jm Q′j j
Q′mm Q′mj

) (
x

y

)
= −

(
ηkM−1G−1hi

M−1G−1ei

)
(2)

where the operator matrices are de�ned following suitable duality rules [1]. It can be shown

that the two new equations in (1) and (2) are immune from low-frequency breakdown and,

moreover, it can be shown that they can be successfully combined in a Calderon fashion to

obtain an equation immune from mesh re�nement ill-conditioning which reads(
Q′jm Q′j j
Q′mm Q′mj

) (
Q′jm Q′j j
Q′mm Q′mj

) (
x
y

)
= −

(
Q′jm Q′j j
Q′mm Q′mj

) (
ηkM

−1G−1hi

M−1G−1ei

)
. (3)

2 Numerical Results

The new formulation has been tested on a torus of external radius equal to 1.5m, internal ra-

dius equal to 0.5m and of dielectric constant ϵr = 3. The fact that the new equation is immune

from the low frequency breakdown is con�rmed by Figure 1(a), while the mesh re�nement

breakdown immunity is veri�ed in Figure 1(b).
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Abstract

The Multiple Multipole Program (MMP) is a Tre�tz method for computational elec-

tromagnetics, successfully employed in the code OpenMaXwell for many years.

MMP cannot handle nonlinearities in the material parameters. We propose to couple

MMP with the Finite Element Method: FEM models the bounded nonlinear region, while

MMP the unbounded exterior domain. Interface conditions on the boundary establish

the good mathematical behavior of the joint solution.

Key words: �nite element method, multiple multipole program, method of auxiliary
sources, Tre�tz method, computational electromagnetics

MSC 2010: 35Q61, 65N30, 65N80, 65Z05

1 Introduction

The Finite Element Method and the Multiple Multipole Program enjoy complementary cap-

abilities. FEM requires a mesh of the computational domain of interest. This is expensive,

but it can treat nonlinear materials. Moreover, FEM allows a purely local construction of the

discrete system of equations.

On the other hand, MMP is a boundary method using basis functions that solve exactly

the PDE: only integrals on a hypersurface have to be computed, and the obtained linear com-

bination is valid in the whole domain where the PDE holds. At the same time, MMP performs

better where the electromagnetic �eld is smooth, i.e. in the free space far from the physical

sources and material interfaces: many basis functions, or basis functions with a complicated

form, are needed to correctly model singularities of the �eld. In such situations, positioning

the basis functions and choosing their orders are nontrivial tasks and require heuristic rules.

Thus, a natural way to combine the strengths of these methods arises when one needs to

simulate the electromagnetic �eld of a material with nonlinear properties surrounded by free

space: use FEM on a mesh de�ned in the material and MMP outside, matched with FEM on

the subset of the mesh that covers the material surface.

However, while the basis functions of FEM have a �nite support, the basis functions

of MMP are global: this leads to computational issues. Many matrices that are assembled

by FEM are symmetric and diagonally dominant, and therefore easy to invert; conversely,

MMP always leads to dense matrices. The matrices of MMP, usually obtained by a collocation

method, are rectangular, and the related linear systems are solved in a least-squares sense.
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2 Mathematical Framework

The interface conditions on the surface of the material modeled by FEM are key to accurate

coupled FEM-MMP solutions. Integrating by parts the variational form of the PDE solved by

FEM, surface integrals appear, through which one can impose interface conditions by substi-

tuting the ansatz of MMP. However, not all interface conditions can be imposed in this way.

We have explored two approaches to include the additional conditions.

The �rst approach is based on the collocation method, like MMP. Quadrature nodes on

the intersections of the FEM elements with the boundary are selected as matching points. The

number of points is chosen to make the system matrix almost square. This method proved

reliable with nontrivial geometries, but so far lacks a rigorous mathematical foundation.

The other approach is a Galerkin method that introduces a weak formulation of the ad-

ditional conditions. MMP basis functions (or their derivatives) are chosen as test functions.

Usually, this can be done in a way that yields a symmetric linear system.

Future research will explore alternative ways to build the system coupling FEM and MMP.

3 Numerical Results

We have simulated electromagnetic �elds in magnetostatics and wave scattering with di�er-

ent geometries and material parameters. When the material parameters are set equal to those

of free space, the FEM-MMP coupling produces the expected results.

(a) OpenMaXwell (b) FEM-MMP Coupling

Figure 1: Photonic nanojet: magnitude of H-�eld at t = 0, ϵr = 2.5281,
r
λ = 1.25.

Figure 1 shows the photonic nanojet for a circle of dielectic material surrounded by free

space. On the left, the well-established code OpenMaXwell was employed, modeling with

MMP only. On the right, the coupling between FEM and MMP.

An extension to transient Maxwell equations will be considered in future research.
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Abstract

The Boundary Element Tearing and Interconnect (BETI) method introduced by Langer

et al. [3] and analysed in the context of the three-dimensional Maxwell system in Windisch

[1] allows for a domain decomposition based solution of scattering and transmission

problems. Like other domain decomposition methods its aim is twofold: to accelerate

the solution by describing it in terms of linear systems with bene�cial spectral problems,

and (ii) to expose opportunities for parallelisation of the solution so that the deployment

of multiple computing nodes can further accelerate the process. In order to arrive at a

bounded condition number, both a preconditioner for the local Dirichlet problems and

the global problem need to be provided. In this contribution, a Calderon based local pre-

conditioner for the local problem will be described [2, 4]. The discretisation is detailed,

and numerical experiments are presented to demonstrate its correctness and perform-

ance.

Key words: Calderón Preconditioning, Electromagnetic Scattering, Boundary Element
Tearing and Interconnecting Method, Frequency Domain Analysis

1 Introduction

To lighten the notation only the case with a single interior domain will be discussed. The

extension to the general case will require the careful bookkeeping of Lagrange multipliers,

especially where three or more domains meet, but this is an issue orthogonal to the solution

of the local problems.

Consider a bounded and connected domain Ω1 with an unbounded complement Ω0. The

normal pointing into domain Ωi is denoted n̂i . The domain Ωi is �lled with a material char-

acterised by an imepdance ηi and a wavenumber ki . The single and double layer boundary

integral operators are de�ned by

Ti j =
1

iki
n̂i × grad

∫
Γ

e−ikiR

4πR
div j(r ′)dr ′

− ikin̂i ×
∫
Γ

e−ikiR

4πR
j(r ′)dr ′ (1)

Ki j =n̂i ×
∫
Γ
grad

e−ikiR

4πR
× j(r ′)dr ′. (2)
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Based on the representation theorem and the symmetric representations of the Poincare-

Steklov operator for solutions in the respective domains, the boundary element tearing and

interconnecting method as described in [1] leads to the following dual system for a set of

Lagrange multipliers:

(
1 0

) (
1

η0
T0 K+

0

−K−
0

η0T0

)−1 (
λ
0

)
+

(
1 0

) (
1

η1
T1 K+

1

−K−
1

η1T1

)−1 (
λ
0

)
= . . . (3)

with K±i = Ki ± 1/2 and where the Lagrange multiplier is a density supported by Γ. In the

general case of multiple domains care needs to be taken to construct one Lagrange multiplier

for every continuity constraint between the electric traces in each of the domains [1]. The

solutions for the electric and magnetic traces, and any derived quantity of interest, can be

readily computed when the above system is solved for λ.

To e�ciently solve this equation, fast algorithms are required, not only to compute the

inverses of the block operators appearing in (3), but also to minimize the number of iterations

required in the iterative solution of the global system. This contribution focuses on the imple-

mentation of a Calderon preconditioner [2] that allows (in combination with a matrix-vector

product acceleration algorithm) to invert the local block operators in near linear time (w.r.t.

the local number of DoFs).

The local systems are equivalent to computing the action of the Poincare-Steklov op-

erator. The study of the mapping properties of this operator (e.g. [1]) and the numerical

results on preconditioning this operator in a FEM setting [4] provide the motivation to apply

a Calderon Multiplicative Preconditioner to these system. The Rao-Wilton-Glisson/Raviart-

Thomas discretisation of the local variational problems is preconditioned by a di�erent dual

Bu�a-Christiansen based discretisation of the same system.

We will detail how this discretisation is constructed and how to integrate the precondi-

tioner in the solution process. Results will be shown that clearly demonstrate the e�ciency

of the preconditioner and its e�ect on the spectral distribution of the linear systems to be

solved.
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Abstract

A nonlinear hyperbolic Maxwell equation is studied, where an solely time dependent
convolution kernel is unknown. Additional normal component measurement of Electric
field along the whole boundary is used to recover the missing kernel.

The existence of a solution to this inverse problem is shown. Moreover, a constructive
algorithm for approximations is designed and its convergence is established. Uniqueness is
proven for a regular solution. Theoretical results are supported by a numerical experiment.

Key words: PDE’s, Inverse problem, Maxwell’s equations, convolution kernel, bound-
ary measurement

Introduction

We assume that Ω ⊂ R3 to be a bounded and connected domain where Ω ∈ C1,1 is either
smooth or convex.

The starting point for the modelling of electromagnetic fields are the classical Maxwell’s
equations, which consist of four (Maxwell-Ampere’s, Gauss electric, Faraday’s and Gauss
magnetic) laws

∇ ×H − ∂tD = J + J app , ∇ · D = ρ,
∂tB + ∇ × E = 0, ∇ · B = 0, (1)

The exact form of the constitutive relationships, that accomapny (1) depends on the situ-
ation under consideration. These dependencies can be linear (in linear materials) or nonlinear
(in superconductors, nonlinear optics,. . . ). Strictly speaking, from a physical point of view,
relations may be hereditary. Applications can be found in chiral media [4], meta-materials
[3, 2] or polarized media [5]. The authors of [1] have considered a nonlinear memory effect for
polarization P of the type

P (t ) = (д∗ [E + f (E)]) (t ),

where the symbol ∗ stands for the convolution in time (K ∗u (x )) (t ) =
´ t
0 K (t − s )u (x , s ) ds.

The formulation from [1] can be interpreted as a generalization of the Debye or Lorentz polar-
ization models in the sense that the polarization dynamics is driven by a nonlinear function of
the electric field. In our paper we adopt a generalized Ohm’s law of the following form

J = σ ∗E − 1∗д(E).
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Further we assume that
D = εE and B = µ (H − 1∗ f (E))

with a positive variable permeability µ. Elimination of H in (1) leads to

εEt t + (σ ∗E)t + ∇ ×
(
1
µ
∇ × E

)
= д(E) + ∇ × f (E) − J

app
t .

The conductivity term σ is assumed to be separable, i.e.

σ (x , t ) = α (t )σ̃ (x ),

where the given σ̃ (x ) describes the heterogeneity of the material. We assume that σ̃ is constant
along Γ with σ̃ |Γ = σ Γ. The hereditary weight α (t ) is unknown and is has to be determined.
We consider boundary condition modelling a perfect contact (2) and initial data (3)

E × ν = 0 on Γ, (2)

E (x , 0) = E0 (x ), Et (x , 0) = V 0 (x ) inΩ. (3)

The inverse problem (IP) is to find a couple {E (x , t ),α (t )}. The missing data function α (t ) will
be recovered by means of the following measurement along Γ

ˆ
Γ
E · ν dγ =m(t ), (normal component measurement). (4)
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Abstract

We propose a novel Calderón preconditioner, based on the Poincaré-Steklov operator,

to solve scattering problems involving (lossy) conductive and high-dielectric contrast me-

dia. The resulting system matrix is well-conditioned, independent of the speci�c material

characteristics of the scattering media, as demonstrated by a numerical example.

Key words: Calderón preconditioning, electromagnetic scattering, Poincaré-Steklov op-
erator, high-dielectric contrast media, boundary integral equations.

1 Formulation

The computational solution of electromagnetic scattering problems involving (piecewise) ho-

mogeneous structures can be obtained by the Method of Moments (MoM). The popularity of

this method stems from the small system matrix dimensions when compared to other full-

wave simulation algorithms. In general, this leads to a faster solution. However, the MoM

system matrices notoriously su�er from dense-mesh and low-frequency breakdown, which

worsens the convergence time and accuracy of the iterative solution. The introduction of a

Calderón preconditioner in earlier research [1] solves this problem only partially, since the

presence of conductive or high-dielectric contrast media still leads to bad conditioning [2].

For this reason, we introduce a Calderón preconditioned single-source equation that does not

su�er from breakdown in these problematic cases.

The proposed method allows to model scattering problems with N bounded, disjunct

domains Dl ∈ R
3
, l = 1, ...,N with boundaries Sl , characterized by a (complex) permittivity

εl and permeability µl . These domains reside in a homogeneous background medium D0,

de�ned by ε0 and µ0. We introduce an incident electromagnetic �eld (ei ,hi ) with e jωt time

dependency. In general, the �eld (es ,hs ), scattered by the media in Dl , l = 1, ...,N cannot

be determined analytically. Therefore, an equivalent problem is introduced, in which the

medium inside each scattering domain is replaced by that of the exterior region. We impose

�ctitious magnetic currents ml , residing on Sl , that generate the same scattered �elds as in

the original problem. This can be achieved by introducing a Poincaré-Steklov operatorPl that

maps the tangential electric �eld on the tangential magnetic �eld at each boundary Sl , and

by imposing continuity of the tangential �elds along Sl . However, after discretization, the
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resulting matrix equation is ill-conditioned and computationally expensive to solve. Hence, a

Calderón preconditioner based on the electric �eld integral operator [1] is introduced. It can

be shown that the accumulation points of the eigenvalue distribution of the preconditioned

matrix are given by
1

2
± 1

2

√
ε0
εl
j and

1

2
± 1

2

√
µl
µ0
j. When the permeability remains bounded, the

system is well conditioned regardless of dielectric contrast, as long as εl 9 −ε0 and µl 9 −µ0.

2 Numerical Results

First, the method was veri�ed by comparing the scattered �elds of a single sphere to the

Mie series solution. Second, electromagnetic scattering at a con�guration consisting of four

objects is considered to numerically validate the novel Calderón preconditioner, see Fig. 1(a).

From Fig. 1(b), it is clear that dense-mesh breakdown does not occur, despite the presence of

high-dielectric and conductive media.

x y

z

(a) Geometry of the scattering problem.
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nr. of iter., f = 100 kHz
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cond. nr., f = 100 kHz

cond. nr., f = 1 MHz

cond. nr., f = 10 MHz

(b) Conditioning and number of iterations.

Figure 1: Scattering at a con�guration consisting of a sphere (ϵr = 4, radius = 1m), cube

(ϵr = 15, length = 2m), cuboid (ϵr = 100, height = 2m, length = 1m) and cylinder (copper,

height = 2m, radius = 0.5m). In (a), the geometry is visualized. In (b), the conditioning and

number of iterations to reach convergence (relative error ≤ 10
−5

) are given as a function of

the number of unknowns, for di�erent frequencies.
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Abstract

A stochastic framework is described to quantify the statistical distribution of the over-

all performance of wireless links. A generalized polynomial chaos expansion relates this

distribution to variations in geometry and uncertainty in orientation and position of the

receive and transmit antenna. A non-intrusive stochastic testing procedure is applied to

evaluate the uncertainty on the e�ciency of a wireless power transfer system.

Key words: statistics, generalized polynomial chaos, stochastic testing, electromagnetic
theory

1 Stochastic framework

In a wireless link, the antenna geometries, positions and orientations will be random vari-

ables xk . Therefore, the system performance y will be statistically distributed. Our aim is to

calculate this probability density function (PDF) dPy , given the statistically independent in-

put distributions dPxk
describing the antenna variability and uncertainty. Let x be the vector

containing all input random variables. To determine dPy , we approximate the relationship

y = f (x ) by the generalized polynomial chaos (gPC) expansion

y ≈ f P (x ) =
L∑
l=0

yxl ϕ
x
l (x ), (1)

with l = [l1, . . . , lK ] a multi-index and with l1 + . . . + lK ≤ L. The set of expansion poly-

nomials ϕx
l
(x ) is composed of products of orthogonal polynomials ϕl,k (xk ), such that the

Cameron-Martin theorem guarantees exponential convergence to y = f (x ). To determine

the coe�cients yXk , we enforce (1) in a set of testing points chosen according to the stochastic

testing procedure [1].

The stochastic framework is now applied to quantify the uncertainty on the wireless

power transfer e�ciency PTE= ηlink · ηmatch · ηrect in a wireless power transfer (WPT) link

between an MI-212-1.72.45 GHz horn antenna (transmit power 10 dBm at 2.45 GHz) and a

dual-polarized textile patch antenna [2] at a distance d . A fast radiative near-�eld formal-

ism [3] �rst computes the WPT link e�ciency ηlink, for arbitrary positions of transmitter
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and receiver. On the latter antenna, a recti�er, voltage doubler and matching network de-

liver DC power. Harmonic balance simulation in ADS, yields the matching e�ciency ηmatch,

and the voltage doubler and recti�er e�ciency ηrect = Pinc/PDC, with Pinc = ηmatch · Prx and

PDC = V
2

out
/RL .

The transmit antenna being a standard gain horn, we concentrate on random variations

in dimensions and permittivity of the receive antenna. The radiation impedance Zrx = Z r e +

jZ im
and the coe�cients of the spherical harmonics expansion of the antenna pattern are

expressed as gPC expansions as a function of length L, widthW and relative permittivity ϵr .

These parameters are then used to evaluate the radiative near-�eld link, following [3], and to

calculate the wireless link e�ciency ηlink and the received power Prx. The stochastic analysis

accounts for random variations in the position (x ,y) and rotation (θ ,ϕ) of the receive antenna.

The e�ect of all random variables on the overall PTE of the WPT system is given by

PTE =

LPTE∑
l7=0

yxl7ϕ
x
l7
(xwpt) (2)

with xwpt = [L,W , ϵr ,d,x ,y,θ ,ϕ] the vector of all random variables in the link. More details

of the method are described in [2]

2 Results

Consider a WPT link between the standard gain horn and a rectenna on a substrate of thick-

ness 3.94 mm and permittivity ϵr = 1.5259 at 2.45 GHz with patch length L = 45.3854 mm

and width W = 44.4516 mm, at a distance d = 0.6 m. L, W and ϵrvary as independent

Gaussian random variables with standard deviations σL = 0.1628 mm, σL = 0.1268 mm

and σϵr = 0.03190. Antenna positions d , x , y and orientation angles θ and ϕ vary as Gaus-

sian random variables with standard deviations σd = 16.66 mm, σy = σx = 6.66 mm and

σθ = σϕ = 10
◦
. A median PTE of 0.6% is obtained, with the PTE being larger than 0.5% in 75%

of the cases. The two-stage approach, where �rst stochastic antenna models are constructed

based on full-wave simulations and then incorporated into the statistical radiative near-�eld

link model to evaluate the distribution of the PTE reduces the simulation time to about 22 min.

In contrast, a single gPC expansion directly applied to model the overall PTE requires more

than 2 h. A validation based on the Monte Carlo method requires more than 41 h, since 10000

realizations need to be evaluated through full-wave simulations.
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Abstract

We propose a novel curl splitting technique to enhance the alternating-direction
�nite-di�erence time-domain (ADI-FDTD) method, as such allowing for a higher resol-
ution in one or two dimensions. As our advocated approach leverages a hybrid implicit-
explicit (HIE) update scheme it is named “leapfrog ADHIE-FDTD”. The hybridization
yields a time step that is solely bounded by the spatial steps in preferred dimensions.

Keywords: Alternating-direction �nite-di�erence time-domain (ADI-FDTD), hybrid implicit-
explicit (HIE), electromagnetic theory

1 Formulation

The standard leapfrog ADI-FDTD method relies on a smart way to split the curl in Maxwell’s
equations without breaking the symmetry [1, 2]. Here, we propose a new type of curl split-
ting, resulting in a HIE scheme. Compared to ADI-FDTD, the novel scheme allows resolving
structures that are �ne in one or two dimensions, whilst explicit updating is used for the re-
maining coarsely discretized dimension(s), leading to increased accuracy and computational
speed-up. Compared to the standard leapfrog Yee-FDTD and owing to the implicitization,
the ADHIE-FDTD features a less stringent stability limit, rendering it computationally very
e�cient.

Suppose we want to resolve an object that is thin along the x-axis. Then, we propose to
eliminate the x-dependence from the Courant limit by splitting the curlC = C0 +C1 +C2 into
the following three components:

C0 =


0 −∂z ∂y
∂z 0 0
−∂y 0 0

 , C1 =


0 0 0
0 0 0
0 ∂x 0

 , C2 =


0 0 0
0 0 −∂x
0 0 0

 . (1)

The occurring derivatives are discretized by central di�erences on the conventional Yee lattice.
The novel leapfrog ADHIE-FDTD update scheme is given by[ (

1 + σZ∆τ
2

)
I + ∆τ 2

4α C1C
T
1 −∆τ C

0 I + ∆τ 2
4α CT

2C2

] [
Z−1en+1

hn+0.5

]
=

[ (
1 − σZ∆τ

2
)
I + ∆τ 2

4α C1C
T
1 0

−∆τ CT I + ∆τ 2
4α CT

2C2

] [
Z−1en

hn−0.5

]
, (2)
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where σ is the electrical conductivity, Z = (µ/ϵ)1/2 the wave impedance, ∆τ = c∆t the time
step rescaled by the phase velocity c = (ϵµ)−1/2, and α is a tunable parameter.

It can be proven, following the reasoning described in [3], that a su�cient condition for
numerical stability of the proposed scheme is given by

∆τ <
1 − α√
1

∆y2 +
1

∆z2

, α ∈]0, 1[ . (3)

Owing to the curl splitting (1), ∆x has been eliminated from the stability limit (3). From (2)
and (3), it is now clear that the parameter α controls the trade-o� between accuracy and
simulation speed. One the one hand, the smaller α , the larger the perturbation introduced by
ADI and the larger the numerical error will be. On the other hand, a smaller α yields a larger
maximum allowed time step ∆τ .

2 Results

To test the advocated method, we simulate the shielding e�ectiveness (SE) [4] of a thin metallic
sheet of in�nite dimensions placed in the yz-plane. The sheet has a thickness of 10 µm in the
x-dimension and a conductivityσ = 107. It is illuminated by a z-oriented electric dipole placed
at a distance of 150 mm before the shield. The simulation domain is terminated by means of
perfectly matched layers (PML) and the grid contains 16 × 16 × 164 cells. In ADHIE-FDTD,
the cell size is given by ∆x = ∆y = ∆z = 1.875 mm everywhere, except in the thin sheet,
where ∆xsheet = 0.15873 µm. Consequently, locally, the re�nement ratio along the x-axis is
very large, i.e. ∆x/∆xsheet > 104.

When sweeping the parameter α from 0.25 to 0.90, we observe that the relative accuracy
on the SE at a frequency of 10 GHz varies from 5% to a few tens of one percent, where standard
Yee-FDTD was used as a reference method. This validates the accuracy of our technique.
Moreover, whereas in Yee-FDTD, the time step has to be chosen at c∆t = 159 nm to resolve the
thin sheet, in our ADHIE-FDTD this time step can be chosen between 0.1 mm up to 1 mm. As
the required CPU time scales as 1/∆t , the novel scheme is clearly much faster than traditional
methods.
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Abstract

We will present a rigorous, mathematical and physical derived model for charge

transport in all-solid-state battery (ASSB) thin �lm cells based on the solid electrolyte

(SE) model presented in [1]. Space charge layer (SCL) formation and charge transport in

the SE is described by the continuity equation for the cation concentration, quasi-static

momentum equation and Poisson’s equation. The electric SCLs in the electrodes are ap-

proximated as an ideal plate capacitor. The charge transfer at the electri�ed electrode-SE

interface is modeled by a Butler-Volmer like approach [2, 3]. The resulting model for

a complete ASSB cell resolves the ionic SCL and couples to intercalation electrodes by

taking account of the e�ects of the electric SCLs without detailed resolution. Long time

behaviour is investigated by energy and entropy laws. Further, numerical results are

presented.

Key words: all-solid-state batteries, Butler-Volmer approach, electro-reaction-di�usion
systems, well-posedness

1 Introduction

SEs have experienced a growing interest in recent years as potential future components of safe

next-generation high voltage batteries. The physical processes inside SEs are governed by the

material properties of the utilized solids and the characteristics of the interfaces between the

other components. Particularly, the processes at the interfaces resulting in SCLs are con-

sidered to be responsible for the present limitations of ASSBs.

The classical Poisson-Nernst-Planck (PNP) approach for ion transport in a self-consistent

electric �eld is known to fail at the interfaces, since it neglects the high pressures induced by

Maxwell-stress and it does not account for species interaction and volume constraints. But

understanding and facing the various challenges of ASSBs requires fundamental knowledge of

the underlying interfacial processes. For this reason, the rigorously derived transport model

for SEs [1] is extended to ASSB thin �lm cells.
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2 The Mathematical Model

Crystalline SEs are single ionic conductors containing one immovable constituent—the an-

ions. Mass and charge transport within SEs is considered as a hopping mechanism, where

cations move to adjactent free cation sides. As shown in [1], the barycentre in SEs moves

relatively to the stationary anion lattice and ion transport is given only by one independent

di�usional cation �ux, which depends on the chemical potentials µα ,α = +,−,v of all spe-

cies. In the case of incompressible SEs the cation �ux obeyes a gradient �ow structure, where

the driving force is given by the negative gradient of the e�ective electrochemical potential

ψSE = µ̃+(c+,p) + z̃+ϕ of the SE

N + = −L∇ψSE = −L

(
∂µ̃+
∂c+
∇c+ +

∂µ̃+
∂p
∇p + z̃+∇ϕ

)
.

Depending on the underlying free energy approach di�erent driving forces may be derived.

On the relevant time scale, the coupled system of partial di�erential equations (PDEs) for

isothermal, incompressible SEs consists only of the continuity equation for the cation con-

centration c+, a force balance to determine the pressure p, and Poisson’s equation specifying

the electric potential ϕ response on the charge density q

∂tc+ + ∇ ·
ρ

ρ−
N + = 0,

∇p = −q∇ϕ,

−∇ · ϵ0(1 + χ )∇ϕ = q.

The ionic SCLs in the SE are explicitly resolved. On the other hand, since the thickness of the

charge compensating electric SCLs in the electrodes is in the order of angstrom, they may be

approximated as an ideal plate capacitor. The SE model is coupled to intercalation electrodes

by a Butler-Volmer like approach as well as suitable jump conditions.

The resulting system of PDEs for charge transport in ASSB cells is a generalised electro-

reaction-di�usion system on di�erent domains.

3 Long-time Behaviour via Energy and Entropy Laws

The model equations include several model assumptions. The question arise, whether the

derived model is still in conformity with thermodynamics. For that reason, we will apply

the energy and entropy laws to show the thermodynamic correctness via existence of a weak

Lyapunov function. In a way, it is an adoption of the second law of thermodynamics to a

mathematical model.
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Abstract

We present several approaches for adaptive solutions with �nite elements of micro-

scopic and macroscopic models for lithium ion battery electrodes.
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1 Introduction

A state of the art Lithium-ion cell consists of two porous electrodes (anode and cathode)

whose porosity is �lled with liquid electrolyte that serves as an ionic connection between the

two electrodes, while in the crystal structure of the active material Lithium can be stored.

The electrochemical phenomena that have to be taken into account in numerical simulations

have a multiscale character and this aspect has to be considered in modelling and simulation.

2 Macroscopic problem

For the upscaling of the mathematical models of the electrochemical processes some auxili-

ary problems (called cell problems) have to be solved. Since this part of the model captures

the microscopic e�ects, it needs appropriate numerical methods to describe the microscopic

porous electrode microstructures, see Figure 1(a). We show numerical methods based on ad-

aptive �nite elements for the solution of the cell problems. In addition, we present an adaptive

method for an upscaled Newman-type battery model based on the work [2].

3 Numerical methods

For the simulation of complex microstructures we show a 3D adaptive XFEM implementation

[1] based on a goal oriented error estimator. Through this method, the mesh is re�ned only

according to a “macroscopic” quantity of interest as needed on homogenization problems [3],

see Figure 1(b). A central role in our microstructure simulations is played by the implicit
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description of the material interface. We present an e�ective combination of spherical har-

monical functions, level-set method and XFEM discretization to compute e�ective quantities

needed for the upscaling, see Figures 1(b) and 1(d).

For the simulation of the macroscopic battery model, a time-space adaptive �nite element

method is under development and �rst numerical results are presented.

(a) Real lithium ion battery elec-

trode approximated with XFEM

(b) Local mesh re�nement and ele-

ments subdivision of a periodic

structure of active particles

(c) Two particles approximated by

spherical hermonical functions

(d) Subdivision of a 3D hex ele-

ment to resolve the interface

Figure 1: Approximations of 3D microstructures with adaptive XFEM.
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Abstract

We consider a system of partial di�erential equations arising in the modeling of the
electrochemical processes in Li-ion batteries. In this simpli�cation it consists of two el-
liptic equations in two domains separated by an interface. At the interface holds a Neu-
mann condition that depends exponentially on the jump of the solution at the interface
(ButlerâĂŞVollmer equation). We prove unique existence of a solution and a comparison
principle. We further discretise this problem with a �nite element method and show its
convergence. (Joint work with Markus Maier)
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Abstract

A numerical model to simulate the three-dimensional coupled transport and reaction

phenomena in slurry electrodes is presented. The model can predict the in�uence of

composition and �ow conditions of the anodic zinc-electrolyte suspension on the overall

performance of zinc-air �ow batteries. The governing equations describing the electro-

lyte �ow, concentration as well as potential distributions are discretized by �nite volumes

and are coupled to a Lagrangian description of the discrete zinc particles.

Key words: slurry electrode, multiphase �ow, percolation, �nite volume method, discrete
element method

1 Introduction

The investigated slurry electrode is composed of microscopic zinc particles suspended in a

gelled aqueous electrolyte solution. Within the battery cell, the suspension is transported

through �ow channels, which are bounded by a separator, a current collector and, if applic-

able, electrochemically inactive channel walls. During discharge, the metallic zinc particles

act as the anode electrode, if an electrical contact is established to the current collector. The

active electrode surface area, and consequently the maximum discharge power density, then

depend on the dynamic percolation network in the �owing slurry.

2 Model Description

The partial di�erential equations for momentum, species, charge and energy are discretized

by the �nite volume method and implemented in the OpenFOAM library [1]. The particle

motion including multiple simultaneous particle contacts is described with the discrete ele-

ment method using the LIGGGHTS library [2]. Coupling between the particle and �uid phase

is realized with the CFD-DEM method using the CFDEM library [2], where an empirical de-

scription accounts for the momentum exchange between the viscous, non-Newtonian �uid

and the densely distributed particles. A half-cell model for the anode part of the zinc-air

ACOMEN 2017

141



�ow battery is implemented, which accounts for the �ow characteristics via the described

CFD-DEM coupling method. Simultaneously, the charge and species transport is considered

according to the porous electrode theory as described by [3] and [4]. In contrast to previ-

ous models, the heterogeneous local porosities change temporally depending on the evolving

particle distributions. Additionally, the active electrode surface area in each �nite volume is

dependent on the percolation network from the considered local point to the current collector

surface. The percolation probability is estimated via statistical means from previously conduc-

ted CFD-DEM simulations for the prevalent �ow conditions in the considered anode setups.

Fig. 1 shows the instantaneous (a) and time-averaged (b) fraction of particles in contact with

the current collector within �owing, pseudoplastic sample slurries.

(a) Dynamic percolation for two particle concentra-

tions

(b) Time-averaged percolation depending on con-

centration including the standard deviation from

the mean value

Figure 1: Percolation behavior of uniform, spherical particles in a �owing slurry electrode
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Abstract

An electro-chemical Cahn-Hilliard model for the phase-separation in lithium iron

phosphate is introduced. A linear elastic model describes small deformations of the elec-

trode material due to intercalation. The coupling e�ects are studied on three-dimensional

microstructures for di�erent material parameters and boundary conditions.

Key words: phase-�eld model, Cahn-Hilliard equation, Butler-Volmer kinetics, intercal-
ation, lithium-ion battery

MSC 2010: 35K59, 65M08, 74N25, 82B26, 82C26

1 Electro-chemical model

Some cathode materials in lithium-ion batteries show phase-separation during usage. The

imbalanced intercalation of the lithium ions into the lattice causes large concentration gradi-

ents. The stresses resulting from these gradients can damage and destroy the battery cell.

The computer simulation of the stresses during charging and discharging can support the

development of battery cell structures.

A model coupling lithium-ion di�usion to the electric potential, Butler-Volmer interface

currents and linear elasticity is shown. A phase-�eld method with the Cahn-Hilliard equation

is used to model the phase-separation of lithium-rich and lithium-poor phases. The complex

three-dimensional microstructure of the anode and cathode material in the liquid electrolyte

is resolved. The phase separation dynamics of lithium ions is described based on a micromodel

[1]. It is coupled to the electrolyte phase by Butler-Volmer interface currents [2]. Additionally

mechanical stresses resulting from concentration-dependent strains [3] are computed.

2 Numerical method

A fast immersed boundary method is presented. A three-dimensional �nite-volume discret-

ization on a periodic regular voxel mesh is used in combination with fast elliptic solvers. The

domain decomposition uses the explicit jump method [4]. The semi-implicit time discretiza-

tion is stable and enables larger time steps [5] in the time integration.
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Figure 1: Left: Phase-separating cathode microstructure of three spherical particles. Depicted

is the concentration inside the electrode and the lithium ion current in the electrolyte. Right:

Cell voltage and maximum non-dimensionalized stress invariants occuring in the electrode

during a charge cycle.

3 Numerical tests

Figure 1 shows on the left the phase separation in a cathode microstructure made from three

spherical particles. On the right, the cell voltage and non-dimensionalized maximum stress

invariants occuring in the electrode during a charge cycle are depicted. The simulation results

of the phase separation are interpreted to allow for qualitative and quantitative prediction of

damage and fracture resulting from multiple charge cycles by extension of the linear elastic

model to e.g. include large deformations.
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Abstract

Lithium-ion batteries present many modelling challenges, including complex electro-

chemical reactions, transport in porous heterogeneous materials, multi-scale structures,

etc. Several approaches have been developed to describe and numerically solve micro- or

meso-scale equations. However, for practical applications such as hybrid vehicles, there

is an increasing need of fast online, yet accurate, simple reduced models. State-of-the-art

macroscopic models for battery applications are de�ned by system identi�cation tech-

niques and fail to capture the intrinsic functional dependence of the parameters on the

material attributes and to predict irreversible and complex non-linear phenomena such

as fast (dis)charge and degradation. We present an analytical approach for model reduc-

tion, based on spectral analysis of the underlying PDEs, to develop simple and e�cient

reduced order models, as an alternative to classical equivalent circuit models. Starting

from the well-know porous electrode theory and Newman’s model, we derive and solve

simple di�erential equations that can retain the interesting features of the full model (e.g.,

solid di�usion, non-linearities). This model can easily be implemented in online battery

management systems and can be coupled with data assimilation and control techniques.

We also discuss the possibility of a full multi-scale approach by integrating pore-scale

analysis of the porous micro-structures via fully resolved direct numerical simulations.

Key words: Lithium-ion batteries, Model reduction, Porous Media, Spectral analysis,
Asymptotic expansion

1 Newman’s model

Following [1], the electric potential in the solid and electrolyte phases is governed by:

∇ ·
(
σ∇ϕs

)
= As jBV , σ

∂ϕs
∂n
|x=0 = ±

I

A

∂ϕs
∂n x=L

= 0 (1)

∇ ·
(
κ∇ϕe + κD∇ log ce

)
= −As jBV ,

∂ϕe
∂n
|x=0,L = 0 (2)

The equation for the ionic concentration ce is

∂ce
∂t
− ∇ · (De∇ce ) =

1 − t0+
Fε

jBV , De
∂ce
∂n x=0,L

= 0 (3)
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where A is the surface area of the current collector, As is the speci�c surface area of the

particles, and I is the applied current. F is the Faraday constant, t0+ is the transference number,

ε is the porosity, ϕ are the potential �elds and c is the ionic concentration where subscripts e
represent electrolyte and s the solid phase. The reaction term jBV that is the current source

given by Butler-Volmer equation

jBV = jBV (x) = i0 sinh

(
αF

RT
η

)
(4)

where R is the universal gas constant, F is the Faraday constant, α is the transfer coe�cient

for an electrode reaction (assumed equal for anode and cathode, equal to 0.5). i0 and η are,

respectively, the exchange current density of an electrode reaction, and the overpotential

i0 = i0(cs , ce ) = Kcαe (cs,max − cs )
αcαe (5)

η = η(ϕe ,ϕs , cs ) = ϕs − ϕe −U0

[
cs

cs,max

]
(6)

with constants cs,max , K and open-circuit potential function U0. The solid surface con-

centration cs = cs (x) in these expressions is given by the Dirichlet boundary value of:

∂γ

∂t
− ∇ ·

(
Ds∇γ

)
= 0, in Ωs Ds

∂γ

∂n
|Γs =

1

F
jBV (7)

2 Reduced model

Assuming spherical particles, neglecting ce , and linearising the Butler-Volmer relation jBV =
a0 + accs + aϕϕs We can analytically obtain:

ϕs (L1, t) − ϕs (0, t) =

∫ t

0

K(t − τ ) I (τ ) dτ .

K(t) =
∑
l

L2

2π 2l2
χ̂2l K

′
l , K ′l =

∑
k

e
−αk (θ2l )2t

with αk (θl ) > 0 is kth solution of θ tan(α) = α with θl =
Rac
Ds F

1

1+
AaϕL

2

σ π 2l2

+1 and χ̂l =
2

L
1

Asb+σπ 2l 2

The kernelsK and K ′l are the key quantities needed for understanding the full dynamics

of the system for the macroscopic quantities of interest.
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Abstract

This work sets forth a new model of the response of active particles during insertion

and extraction of lithium ions in the electrodes of Li-ion batteries. The phase changes

during insertion are described via trapping of interstitial lithium with its own chemical

kinetics. Non convex free energies are derived accordingly. Numerically obtained evol-

ution of stored lithium will be presented.

Key words: Lithium batteries, trapping reaction, phase transition

1 Introduction

LiCoO2 provides good capacity, high energy density, good power rates and cycle life. Such a

favorable electrochemical behavior is associated with a sequence of phase transitions, which

progressively change the crystal structure [1]. A recent formulation [3] of a fully coupled

model for mass, mechanics, and chemical reactions applies well to the insertion and removal

of a mobile guest species into a stable host crystal structure. Structural changes are modeled

here through trapping of Li ions, which allows modeling phase segregation.
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2 Modeling and Simulations

The trapping process of lithium is described as a chemical reaction:

LiL � LiT (1)

which portrays the conversion of mobile (L) to trapped (T ) species and vice-versa by the rate

of reaction w (1)
. The mass and force balance equations yield:

∂cL
∂t
+ div [hL] +w

(1) = 0,
∂cT

∂t
−w

(1) = 0, div [σ ] + b = 0. (2)

Symbols in equations (2) have the following meaning: cβ (with β = L,T ) is the molarity of a

generic species Liβ , hL is the mass �ux of species LiL , σ is the stress tensor, and b is the body

force.

Constitutive laws are derived from rigorous thermodynamic principles, assuming a visco-

plastic response of the host material. The governing equations for mass, chemical reaction,

and mechanics are fully coupled. They have been numerically solved through an Abaqus

User Element Subroutine (UEL) to simulate the response of LiCoO2 particles at di�erent C-

rates. The in�uence of material parameters on the lithium pro�les and on the state of stress

is investigated in realistic geometries and boundary conditions.

Figure 1: Contour plot of Li concentration during Li insertion in a spherical particle under condi-
tion of radial symmetry. The lithium distribution shows two distinct phases separated by a steep
gradient in space.
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Abstract

The coupling of ion transport by di�usion and migration to the �uid �ow of a liquid

electrolyte gives rise to subtle compatibility conditions for the constitutive equations. In

the electrolyte model of [1] the coupling is realized by a free energy density that con-

tains the elastic energy in addition to the well known contributions from con�gurational

entropy. We discuss the implications of the coupling conditions and the resulting chal-

lenges for the solution of the system. For the application to the �ow in a nanopore with

charged pore walls, we present a numerical method and a dimension reduction approach

for simple symmetric cases.

Key words: modeling, nanopores, Nernst-Planck, numerical methods

1 Electrolyte Model

We consider a liquid electrolyte and let nα with α ∈ {1, . . . ,N } denote the number densities

of the di�erent species in the solution while n0 is the number density of the solvent. The total

mass density is ρ =
∑N
α=0mαnα andv = ρ−1

∑N
α=0mαnαvα is the barycentric velocity, where

vα denotes the velocity of species α . The free charge is given by q =
∑N
α=0 zαnα , where zα is

the charge number of species α . Let φ be the electrostatic potential such that the electric �eld

is E = −∇φ. Independent of the speci�c material under consideration, there is a universal

set of equations describing the evolution of the electrolyte that according to [1] reads for the

isothermal case and with quasi-static momentum balance

∂tnα + div(nαv + 1

mα
Jα ) = rα for 0 , α = 1, 2, . . . ,N , (1)

∂tρ + div(ρv) = 0 , (2)

div(σ ) = q∇φ , (3)

−(1 + χ )ε0∆φ = q . (4)

The newly introduced variables above are the di�usive �uxes Jα , the production rates rα due

to chemical reactions and the stress tensor σ . They can be determined by the assumption of

a free energy density ρψ (T ,n0, . . . ,nN ) − χ ε0
2
|∇φ |2 and exploitation of the 2nd law of ther-

modynamics.
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While the classical Poisson-Nernst Planck system consists only of the subsystem (1) and

(4), the full set of equations above requires for a consistent coupling to �uid �ow the com-

patibility of the �ux J0 of the solvent that

∑N
α=0 Jα = 0. Moreover, with the introduction of

the chemical potentials as µα :=
∂ρψ
∂nα

, the mass conservation requires to take the ion-solvent

interaction into account, such that for the simple case of a diagonal mobility matrix the mass

�ux Jα for α = 1, . . . ,N is

Jα = −Mα (∇µα − mα
m0

∇µ0 + zαe0∇φ). (5)

Introducing the pressure p by means of the Gibbs-Duhem relation p = −ρψ +∑N
α=0mαnα µα ,

we see that in general the chemical potentials µα and the �uxes Jα are functions of p, thereby

linking the Nernst-Planck system to the �uid �ow. We emphasize that incompressibility of

a mixture in general does not imply constant mass density ρ leading to the usual divergence

constraint div(v) = 0. Instead, incompressibility is characterized by a linear dependence of

the chemical potentials µα on p, cf. [4].

2 Application to �ow in nanopores

Biological as well as synthetic nanopores are used for various micro�uidic applications, like

e.g. sensing of large molecules like proteins and DNA strands. Since the pore walls are typi-

cally carrier of surface charge, there are space charge layers formed in the electrolyte. Due to

the small diameter of the pores, these layers may occupy large portions of the pore volume.

For the accurate numerical simulation of the charge layers, structure preserving �nite vol-

ume discretizations of the Nerst-Planck system [2] are applied. Inside the space charge layers

the electric �eld causes the pressure to rise to extremely high level. Thus, when coupling

the charge transport to the �uid �ow, novel so called pressure robust �nite element methods

[3] are used. Then, adequate post processing can in turn provide pointwise divergence free

velocity �elds as an input for the Nerst-Plack subsystem while keeping the structure of the

Helmholtz decomposition.
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Abstract

In this contribution we present recent work on parametric model order reduction for

lithium-ion battery cell models at the pore scale using reduced basis methods. We obtain

a modelling and simulation work�ow which enables fast parameter studies of highly

resolved battery models that are able to capture microscale phenomena such as Lithium-

plating. We give numerical examples which underline the potential of our approach.

Key words: lithium-ion batteries, microscale modelling, model order reduction, reduced
basis method

1 Problem

A major cause for performance degradation and failure of rechargeable lithium-ion batteries

is the disposition lithium (Li) as an additional metallic phase at the negative cell electrode

(Li-plating). The conditions leading to the formation of this additional phase are still poorly

understood, however. It is the aim of the interdisciplinary MULTIBAT
1

research project to

gain new insights into the causes of this phenomenon through mathematical modelling and

numerical simulation [1]. Since Li-plating is in�uenced by the local microscale geometry of

the electrode, only high-resolution models which resolve the local pore-scale geometry of the

electrode will be able to faithfully capture this phenomenon.

2 Model Order Reduction and the MULTIBAT Work�ow

In MULTIBAT we have developed a uni�ed simulation work�ow based on micrometer-scale

partial di�erential equation models [2] and stochastic parametrized modelling of electrode

geometries. Subsequent discretization of these models using the �nite volume method leads

to large, highly nonlinear equation systems which can only be solved with substantial com-

putational e�ort, making parameter studies of the cell’s behavior, e.g. for di�erent charging

regimes, prohibitively expensive. Therefore, model order reduction is a crucial �nal ingredi-

ent in order to make this work�ow feasible.

The reduced basis method (e.g. [3] and references therein) is a generic approach to the

reduction of parametrized discrete problems based on the idea of projecting the original

1http://wwwmath.uni-muenster.de/num/ohlberger/research/projects/MULTIBAT/home.html
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high-dimensional equation system onto a problem-adapted low-dimensional reduced space

spanned by solution snapshots of the high-dimensional problem for certain well-chosen para-

meters. Unlike classical multiscale discretizations, this allows an e�cient reduction of the

computational complexity while retaining the characteristic local microscale features of the

solution.

In this contribution we start with an overview of the MULTIBAT simulation work�ow

and give a brief introduction to the main ingredients of reduced basis methods. We then

discuss the application of these methods in the context of MULTIBAT, as well as the technical

realization based on our free model order reduction software library pyMOR [4]. Numerical

examples will demonstrate the feasibility of our approach.
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Abstract

In this work a thermodynamically consistent model for lithium ion transport in solid

electrolytes (SEs) is used as constraint for optimization. By solving a drift-di�usion Pois-

son (DDP) equation system and applying techniques from in�nite dimensional optimiz-

ation, we �nd optimal material con�gurations for certain favored physical properties.

Key words: batteries, drift-di�usion Poisson system, PDE constrained optimization, solid
electrolyte

1 Introduction

As SEs allow to be promising candidates for future batteries, the simulation in this �eld be-

comes more and more relevant. The understanding of the fundamentals of the underlying

equations is crucial. Through optimization we provide valuable information about optimal

material properties with respect to charge-transfer resistance which is known to be a limit-

ing factor of current all-solid-state batteries. Starting point is the partial di�erential equation

(PDE) system derived in [1] consisting of a continuity equation for the cation concentration

c+, a Poisson equation for the electric potential ϕ and a momentum equation. Replacing the

momentum equation by its quasi-static approximation allows us to reduce the PDE system in

the incompressible limit. This results in our DDP equation system describing cation transport

in a self consistent electric �eld:

∂tc+ + ∇ ·
ρ

ρ−
N + = 0

−∇ · ε0(1 + χ )∇ϕ = q
(1)

with generalized drift-di�usion �ux for the cations

N + = − (f (c+)∇c+ + д(c+)∇ϕ) (2)

and suitable initial and boundary conditions. The cation concentration and the electric po-

tential together introduce the state variable y = (c+,ϕ).

ACOMEN 2017

153



2 Optimal Control

We will present �rst optimization results with respect to di�erent cost functionals and min-

imization problems of the form

min

(y,u)
J (y,u) s.t. (1), (3)

where u denotes the control variable. One example for the control might be the dielectric

susceptibility u = χ . This choice is motivated by experiments [3] showing reduced charge-

transfer resistance by dielectric material modi�cations. The solution is obtained via the ad-

joint approach [2] true to the mentality of ’�rst optimize, then discretize’. The PDE system

itself is discretized by a �nite volume method together with implicit time stepping. As soon

as the functional gradient has been characterized, through the adjoint state and implicit func-

tion theorem / Lagrange functional, a gradient projection method coupled with line search is

applied.
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MS 8 Inverse source problems : recent developments
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Description: In various fields of science, engineering and bio-
engineering, many important problems can be formulated as in-
verse problems (IP) for partial differential equations. Among
them, inverse source problems (ISP) which consist of determin-
ing external force terms, from additional informations (given
data, measurements, observations) on the state of the corre-
sponding to the direct problem. The inverse source problems
have attracted great attention from many researchers over recent
years of course of their applications to many practical examples,
particularly in biomedical imaging techniques such as; electro-
encephalography/magneto encephalography (EEG/MEG) prob-
lems, pollution in the environment, photo and thermo-acoustic
tomography (PAT and TAT), bioluminescence and fluorescence.
One of the objectives of this minisymposia is to give an overview
of the state of the art of the topic.
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Electroencephalography inverse source problem in neonates
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Abstract

We investigate the localization of the normal and pathological sources of electric

cerebral activity in neonates from measures in Electro-Encephalo-Graphy (EEG). The

speci�city for neonates is the presence of fontanels in the skull. Mathematically, the for-

ward EEG problem consists in computing the electric potential on the scalp for given

electrical sources located in the brain and di�erent head tissues’ conductivities. The in-

verse EEG source problem is identifying the characteristics of current sources from the

knowledge of the measured potentials on the scalp. We propose in this thesis a math-

ematical model for the forward EEG problem in neonates able to take into account the

presence and ossi�cation process of fontanels. We perform the theoretical and numer-

ical analysis for the forward and inverse problems and discuss the impact of fontanels

for realistic head model. We perform a sensitivity analysis of the model with respect to

variations of the conductivity.

Key words: Electroencephalography (EEG), inverse problem, forward problem, source
analysis, �nite element method, realistic head model, neonates.
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Full discretization of an inverse source problem

M. Grimmonprez1 and M. Slodička1

1 Research Group NaM2, Department of Mathematical Analysis, Ghent University, Belgium

e-mails: Marijke.Grimmonprez@UGent.be, Marian.Slodicka@UGent.be

Abstract

The reconstruction of a solely time-dependent source function in a semilinear para-
bolic problem is considered. The existence and uniqueness of a strong solution to the
problem is proved. Moreover, a full-discrete numerical scheme is designed and some
corresponding error estimates are derived. The results and proofs are collected in [1]
and [2].

Key words: error estimates, full discretization, inverse source problem, semilinear para-
bolic equation

MSC 2010: 47J35, 65M12, 65M32

1 Problem formulation

This research aims to reconstruct the couple {p(t),u(t ,x)} in the semilinear parabolic problem
∂tu(t ,x) − ∆u(t ,x) = p(t)f (x) + д(u(t ,x)) + r (t ,x), (t ,x) ∈ (0,T ] × Ω,

u(t ,x) = 0, (t ,x) ∈ (0,T ] × Γ,
u(0,x) = u0(x), x ∈ Ω,∫

Ω
u(t ,x)dx =m(t), t ∈ [0,T ],

with T > 0 the �nal time and Ω ⊂ Rd , d ∈ N, the spatial domain with a Lipschitz continuous
boundary Γ.

2 Methods

In [1], Rothe’s method has been applied to prove the existence and uniqueness of a strong solu-
tion to the problem. This method also reveals a convergent time-discrete numerical scheme
for approximations. A space discretization of the time-discrete problem has then been carried
out in [2] using the �nite element method.
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3 Results

The following variational formulation has been proposed: �nd {p,u(t)} ∈ L2(0,T ) ×V , with
V :=

{
φ ∈ H 2 (Ω) : φ |Γ = 0

}
= H 2 (Ω) ∩ H 1

0 (Ω), such that for almost all t ∈ (0,T ] and for all
φ ∈ V it holds that

(∇∂tu(t),∇φ) + (∆u(t),∆φ) = −p(t) (f ,∆φ) − (д(u(t)),∆φ) − (r (t),∆φ) ,

with

p(t) =
m′(t) −

∫
Ω
∆u(t) −

∫
Ω
д(u(t)) −

∫
Ω
r (t)∫

Ω
f

.

Under appropriate conditions on the data, the existence and uniqueness of a strong solution
{p,u} ∈ L2(0,T ) × C

(
[0,T ] ,H 1

0 (Ω)
)
∩ L∞ ((0,T ) ,V ) to the problem has been proved in [1].

Moreover, some full-discrete error estimates have been derived in di�erent settings, cf. [2].
In the �rst setting a one-dimensional domain has been considered, Hermite �nite elements
have been used and the global interpolation operator has been applied for the projection onto
the �nite element space. This has led to full-discrete (squared) error estimates of O

(
τ + hs−1

)
or O

(
τ 2 + hmin{s,2(s−2)}

)
, s = 3 or 4, depending on both the regularity of the data and of

the exact solution. These theoretically obtained convergence rates have been supported by
a numerical experiment. Similar error estimates with s = 3, 4, 5 or 6 and with s = 3, 4 or 5
have been derived for a two-dimensional domain with the use of Argyris elements and Bell’s
triangles respectively. A direct consequence of the error estimates is the strong convergence
of the Rothe functions

{
pσ ,uσ

}
to {p,u} in L2(0,T ) × C

(
[0,T ],H 1(Ω)

)
under the acquired

conditions on the data and on the exact solution. Moreover, if the data and the exact solution
are su�ciently regular, it follows that pσ → p in C([0,T ]).
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GPR data interpretation problem and
Inverse Source Problem for wave equation
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Abstract

It is shown that the Ground Penetrating Radar (GRR) data interpretation problem

can be reduced to the inverse source problem in 1D wave equation. The non-iterative

algorithm for reconstructing the unknown spacewise dependent source is developed. The

algorithm is based on the explicit representation of the direct problem solution via the

source function. The minimization problem for discrete form of the Tikhonov functional

is solved numerically for noise free and noisy data.

Key words: GPR data interpretation, inverse source problem, wave equation
MSC 2010: 65N20, 47A52,35L05, 35L20, 35Q86

1 GPR mathematical model

The 1D inverse problem for the model of GPR technique is considered. It is assumed that

the medium �lls the half-space z > 0 and the half-space z < 0 corresponds to the air. Let the

electrical permittivity ε of the medium depend on the coordinate z only, magnetic permittivity

µ = µ0 = const > 0 in the whole space, and the conductivity is negligible. Let the current

source with intensity

jex (t ) = Φ(t )δ (z), Φ(t ) = 0 if t ≤ 0, Φ(t ) ∈ C2
[0,∞), Φ′′(+0) , 0,

be placed at the boundary z = 0 and directed along the axisy. Then it follows from Maxwell’s

equations that the electromagnetic �eld depends on (z, t ) only. The �eld has an electric com-

ponent E2 (z, t ) along the axis y that satis�es the Cauchy problem:

∂2E2
∂z2

= µ0ε (z)
∂2E2
∂t2
+ µ0δ (z)Φ

′(t ), E2 |t<0 = 0. (1)

Denote by c (z) = 1/
√
µ0ε (z). Suppose that the function c−2 (z) is presented in the follow-

ing form

c−2 (z) =

{
c−2
0
, if z < 0

c−2
1
+ F (z), if z ≥ 0,

c0, c1 = const , F (z) ∈ C (R), |F (z) | � c−2
1
,
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where the function F (z) has a �nite support in z ∈ (0,∞) and values c0 > 0, c1 > 0 are given.

Now represent the solution of the direct problem (1) in the form E2 (z, t ) = U (z, t ) + u (z, t )
where U (z, t ) is the generalized solution to the Cauchy problem:

Uzz =
1

c2 (z )
Ut t + µ0Φ

′(t )δ (z), (z ∈ R, t > −∞), U |t<0 ≡ 0, c (z) =

{
c0, if z < 0,

c1, if z ≥ 0.

The linearization of the equation (1) with respect to u (z, t ) shows that this function is a solu-

tion to the following problem

∂2u

∂t2
− c2

1

∂2u

∂z2
= F (z)H (t − z/c1), (z > 0, 0 < t ≤ T );

(
∂u

∂t
− c0
∂u

∂z

)
z=0
= 0, u |t<0 = 0, (2)

where the function H (t ) is de�ned as follows:

H (t ) = µ0c0c
3

1
(c0 + c1)

−1Φ′′(t ), (3)

In GPR method a sought-for function is the F (z) and the electrical �eld E2 (0, t ) is measured.

Then additional data for inverse problem are

u |z=0 = д(t ) ≡ E2 |z=0 −U |z=0, t ∈ [0,T ], T > 0. (4)

2 Numerical method

The solution u (z, t ) at z = 0 is expressed via partial Fourier sum of F (z) and basic functions

Xk (z) in the following form

u (0, t ; FN ) = µ0 (c
−1 + c−1

0
)−2

N∑
k=1

Fk

ct/2∫
0

Xk (ξ ) (Φ
′(t − 2ξ/c ) − Φ′(0))dξ ≡

N∑
k=1

FkGk (t ).

Substituting this formula in the regularized cost functional

Jα (F ) := ‖u (0, ·; F ) − д(·)‖
2

L2 (0,T )
+ α ‖F ‖2L2 (0,l ), α > 0, (5)

where l = l (T ), and taking �rst derivatives of (5) with respect to Fk , we get a system of

algebraic equations, which solution gives Fourier coe�cients of F (z) and de�ne approximate

solution of the considered ISP ([1]). Note that some approximate practical ways to solve

inverse problems arising in GPR techniques are represented in [2] and in the review [3].
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Inverse Coe�cient Problem for a Time Fractional Di�usion
Equation
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Abstract

The existence of a quasi solution for an inverse coe�cient problem is studied. In this
way, it is proved that the convergence of solutions for the corresponding direct problem
continuously depends on the coe�cient convergence. Then, an appropriate class of ad-
missible functions is given and shown that the inverse coe�cient problem has at least
one quasi solution in this class of functions.

Key words: Inverse coe�cient problem, Quasi solution, Time fractional di�usion equa-
tion

MSC 2010: 35R30

1 Introduction

Consider the inverse coe�cient problem of determining the unknown function k in the fol-
lowing time fractional di�usion equation

CDα
t u − ∇ · (k (x )∇u) = f (x , t ), (x , t ) ∈ Q = Ω × (0,T ),

u (x , t ) = 0, (x , t ) ∈ ∂Ω × (0,T ),
u (x , 0) = ϕ (x ), x ∈ Ω,

(1)

from knowledge of the �nal measured data

u (x ,T ) = ψ (x ), x ∈ Ω, (2)

where 0 < α < 1, Ω is a bounded domain in RN , N ≥ 1 with piecewise smooth boundary
∂Ω. Here CDα

t u (x , t ) denotes the left Caputo fractional derivative. For a given k = k (x ) the
problem (1) is called direct problem (DP). In order to determine the unknown function k , one
should solve the following functional equation

u (x ,T ;k ) = ψ (x ), x ∈ Ω, (3)

where u (x , t ;k ) is the solution of DP. In general, instead of solving (3), one usually tries to
�nd the quasi solution of (3), which is obtained from minimization problem

I (k ) = min
k̃ ∈=

I (k̃ ), (4)
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where I (k̃ ) =
∫
Ω (u (x ,T ; k̃ ) −ψ (x ))2dx , and = is a set of admissible functions. The set = is

introduced in the following

= = {k ∈ C (Ω) : 0 < k0 6 k (x ) 6 k1} ,
which guarantees the existence and uniqueness of the solution of DP.

2 Main results

The main contribution of this study is to prove the existence of a quasi solution in the class of
admissible functions =. Due to this, suppose that k ∈ = is given, i.e. the problem (1) is a DP,
and u is its corresponding solution. Moreover, for n ∈ N, the solution of (1) is denoted by un ,
when kn ∈ = is substituted to k . Now, we prove that if {kn} converges pointwise to k , then{un}→ u for (x , t ) ∈ Q . This stability result implies that the functional I is continuous. Then
by constructing a suitable compact subset of admissible initial data =, we can conclude that
a solution of the problem (4) exists for the continuous functional I . This means the existence
of a quasi solution to the inverse coe�cient problem (1)-(2).

De�ne Bα (Q ) := Hα
0 ((0,T ),L2 (Ω)) ∩ L2 ((0,T ),H 1

0 (Ω)), which is a Banach space with
respect to the norm

‖v ‖Bα (Q ) = (‖v ‖Hα ((0,T ),L2 (Ω)) + ‖v ‖L2 ((0,T ),H 1
0 (Ω))

)1/2.

Theorem If k ∈ =, then DP (1) has a unique solution. In addition, if u is a solution of DP (1)
and also f ∈ L2 (Q ) and ϕ ∈ L2 (Ω), then

‖u‖Bα /2 (Q ) 6 c (

f 

L2 (Q ) +
T 1−α

Γ(2 − α )


ϕ

L2 (Ω) ),

where c is an arbitrary positive constant.

This theorem help us to prove the following stability result.

Theorem Suppose that a sequence of functions {km} ⊂ = converges pointwise to a function
k ∈ =. Then the sequence of solutions um = u (x , t ;km ) converges to the solution u (x , t ;k ), i.e.,
‖um − u‖Bα /2 (Q ) → 0 asm → ∞.

Now, we are ready to prove that the functional I is continuous on =.

Theorem The functional I (k̃ ) is continuous on = in the sense that a sequence of functions{km} ⊂ = converges pointwise to a function k ∈ =, then ���I (k̃m ) − I (k̃ )���→ 0 asm → ∞.

In order to construct a compact subset of =, we use Arzela-Ascoli Theorem. Therefore,
in addition to assumptions on k , we assume that the subset =c of = has the equicontinuity,
that is for each ε > 0, there exists δ > 0 such that if k ∈ =c , x1,x2 ∈ RN and ‖x2 − x1‖ < δ
then ‖k (x2) − k (x1)‖L2 (Ω) < ε . Consequently, one can conclude the following theorem.

Theorem Suppose that =c be an equicontinuous subset of =. Then any sequence {km} of func-
tions in =c has a uniformly convergent subsequence

{
km,m

}
such that lim

m→∞
km,m (x ) = k (x ),

∀x ∈ Ω and k ∈ =c .

Theorem The nonlinear inverse parabolic problem (1)-(2) has at least one quasi solution in the
set of admissible coe�cients =c .
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Abstract

An inverse source problem for a time-fractional wave equation in a bounded domain
in Rd is studied. The equation contains Caputo fractional derivative in time with the
order β ∈ (1, 2) and is accompanied with the boundary condition of Neumann type and
initial conditions. The time-dependent source is determined from an additional meas-
urement in the form of integral over the space subdomain. The existence, uniqueness
and regularity of a weak solution are obtained. A numerical algorithm based on Rothe’s
method is proposed, a priori estimates are proved and convergence of iterates towards the
solution is established. Moreover, we present some numerical experiments con�rming
the convergence results.

Key words: time-fractional wave equation, inverse source problem, reconstruction, con-
vergence

1 Introduction

We consider a partial di�erential equation (PDE) with a fractional derivative in time t(
д2−β ∗ ∂t tu(x)

)
(t) − ∆u(x , t) = h(t)f (x) + F (x , t ,u(x , t)), x ∈ Ω, t ∈ (0,T ), (1)

where Ω ⊂ Rd is a bounded domain with a Lipschitz boundary Γ (cf. [1]), T > 0, д2−β is the
Riemann-Liouville kernel given by

д2−β (t) =
t1−β

Γ(2 − β)
, t > 0, 1 < β < 2,

and ∗ denotes the convolution on the positive half-line, i.e.

(k ∗v)(t) =
∫ t

0
k(t − s)v(s) ds .

Thus, the Caputo fractional derivative of order β , cf. e.g. [2, 3], de�ned by

∂
β
t u(x , t) =

(
д2−β ∗ ∂t tu(x)

)
(t),
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appears in the equation (1). Note that the equation (1) is a classical di�usion or wave equation
for β = 1 and β = 2, respectively. We supplement governing PDE (1) with the following initial
and boundary conditions

u(x , 0) = u0(x), x ∈ Ω,
∂tu(x , 0) = v0(x), x ∈ Ω,

−∇u(x , t) · ν = д(x , t), (x , t) ∈ Γ × (0,T ),
(2)

where the symbol ν denotes the outer normal vector assigned to the boundary Γ.
The Inverse Source Problem (ISP) studied in here consists of �nding a couple (u(x , t),h(t))

obeying (1), (2) and ∫
Ω
u(x , t)ω(x) dx =m(t), t ∈ [0,T ], (3)

where the weight function ω is just a space-dependent function [4]. Usually ω is chosen to
be a function with compact support in Ω, and then this type of measurement represents the
weighted average of u on a subdomain of Ω.

The fractional wave equation is used for example to model the propagation of di�usive
waves in viscoelastics solids (cf. [5, 6]).
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Abstract

In this talk, the numerical determination of a space-dependent load source in an
isotropic thermoelastic system of type-III from the knowledge of an additional �nal time
measurement is discussed. A convergent and stable iterative algorithm is proposed for
the recovery of the unknown vector source in the linear case and, at the same time, a
stopping criterion is also given. Several numerical experiments are considered to vali-
date the properties of the proposed iterative procedure and the regularizing/stabilizing
character of the corresponding stopping criterion. The numerical experiments carried
out showed that it exists a certain limitation of the method with respect to the recovery
of non-symmetric sources. The results of this research are published in [1].
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Abstract

This paper is devoted to the study of an inverse source problem governed by full
Maxwell’s equations by means of the potential �eld method (theA-ϕ method). The source
term is assumed to be separable in time and space, in which the unknown part is solely
time-dependent and is recovered from a surface measurement. We prove that the solution
to the inverse problem based on theA-ϕ formulation is existing and unique. We suggest a
constructive scheme for approximating the solution and discuss its convergence. Finally,
a few examples are presented to verify the theoretical results.

Key words: Maxwell’s equations, inverse source problem, A-ϕ method, reconstruction,
time discretization
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Description: The finite element method is widely used to solve
time-harmonic Maxwell’s systems. Today one of the challenges
is to evaluate the quality of the solution with the help of error
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mates, where some regularity results on the exact solutions are
required, or a posteriori error analysis, where only the energy
regularity is requested. My goal is to invite different specialists
on both topics in order to share their recent results.
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Abstract

This contribution deals with eddy current problems considered in their magnetic vec-

tor potential formulations. In order to ensure the uniqueness of the solution, a gauge

condition has to be imposed on the vector potential, and several possibilities occur. We

show the mathematically equivalence between some of these choices in the context of

�nite element methods, for several kinds of con�gurations and boundary conditions, and

paying attention to the discrete form of the source current density. We highlight their

characteristic behaviors on some numerical benchmarks.

Key words: Finite Element Methods, gauge conditions, Maxwell equations.
MSC 2010: 35Q61; 65N30.

1 The eddy-current problem and its usual associated gauges

Let Ω ⊂ R3 be an open simply connected domain with a Lipschitz boundary ∂Ω = Γb∪Γh such

that Γb is connected with a strictly positive measure. We consider the eddy current problem

in its weak formulation that consist in looking for the magnetic induction B = curl A, with

A ∈ X (Ω) the magnetic vector potential, solution of :∫
Ω
µ−1curl A · curl A′dx −

∫
Ωs

j · A′dx = 0 ∀A′ ∈ X (Ω), (1)

where µ is the magnetic permeability of the material, j is the current density, de�ned as a �xed

source distribution js in stranded coils Ωs ⊂ Ω and as an unknown distribution function of A
in massive conductors Ωc ⊂ Ω. X (Ω) is the functional space de�ned by :

X (Ω) = {u ∈ H (curl ,Ω);n × u = 0 on Γb},
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where n is the unit outward normal to Ω. The focus is �rst given on the way js is de�ned,

considering no other forms of j in (1), i.e. with Ωc empty. Provided that div js = 0 in Ωs , it

can be easily shown that problem (1) admits at least one solution. Nevertheless, to ensure its

uniqueness, a gauge condition has to be imposed. Several possibilities occur [1]. A �rst way

to proceed is to use the Coulomb gauge, which consists in looking for A ∈ X0 (Ω) ⊂ X (Ω)
solution of (1) de�ned by :

X0 (Ω) = {u ∈ X (Ω);

∫
Ω
u · ∇ζ dx = 0 ∀ζ ∈ H 1

Γb
(Ω)}, where H 1

Γb
(Ω) = {ζ ∈ H 1 (Ω); ζ |Γb = 0}.

Using some low-order H (curl )-Nédélec �nite elements to obtain an approximation Ah of A
with such a gauge is not convenient (except if the linear solver is well adapted [2]), hence

we can also consider some Lagrange multipliers associated with a weak constraint on the

divergence of Ah , or to restrict the number of degrees of freedom belonging to the discrete

space Xh (Ω) ⊂ X (Ω) using a so-called "tree - co-tree" gauge.

2 Equivalences on characteristic con�gurations

In this talk, several con�gurations will be analyzed, and the mathematical equivalence between

the di�erent previous considered gauges will be adressed for each of them, to prove that all

these choices lead to the same value of the magnetic induction B = curl A. We will treat in

particular the case where Γb on which B · n = 0 is not simply-connected. In that case, we

have to introduce some "cuts" in Γb to make the problem well-posed. In addition to these

theoretical developpements, some tests will be performed to hightlight the performances of

all these gauges from the practical point of view and to illustrate their particular behaviors

(see Figure 1), in particular with di�erent discretization forms of js.

Figure 1: Magnetic vector potential A generated in a domain Ω using the Coulomb gauge

(left), the tree-co-tree gauge (middle), and corresponding magnetic �ux density B = curl A
being the same in both cases (right).
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Abstract

In this communication, a method in 2-D frequency domain is presented to simulate

a laminated iron core with a short-circuit between several magnetic sheets. The idea

consists to model the short-circuit with a classical formulation and to use a homogeniza-

tion technique to model the lamination stack. The problem is the coupling between both

approaches. Otherwise the problem is not linear and only the steady state is considered.

Key words: Electromagnetism, Harmonic Balance, Homogenization, Multi-scale, Non-
linear

1 Introduction

To decrease the eddy current in the iron cores, the electrical devices are usually made of lamin-

ation stacks. Due to the symmetry of the stack and the a priori knowledge of electromagnetic

phenomena inside the sheets, the homogenization techniques can be implemented [1]. The

main interest is the reduction of the size of numerical problem. However, the small insulation

defect can be broken the symmetry and a short-circuit between sheets appears [3]. In this

case, the homogenization techniques cannot be used and the problem becomes multi-scale.

Indeed, the size of defect is the very small behind the size of the lamination stack. The short

circuit is modelled by a classical formulation. Consequently, a coupling between the homo-

genization approach and the classical formulations must be carried out [2]. Otherwise the

problem is not linear and only the steady state is considered

2 Problem to solve

We consider a domain D with a boundary Γ (Γ = Γb∪ Γh1∪ Γh2) constituted of three part, a

non conductive domainDnc , a conductive domainDc and a homogenized domainDh (�gure

1). The sub-domains Dc and Dh are separated by the boundary Γc . In magneto-quasistatics,

Maxwell’s equations can be considered in the frequency domain under the following forms:
rotH = J in Dc
rotE = −iωB in Dc
divB = 0 in D
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Figure 1: Studied domain

where B is the magnetic �ux density, H the magnetic �eld, E the electric �eld and J
the eddy current density. A magnetic �ux Φ is imposed on the boundaries Γh1 and Γh2. In

order to complete these equations, the electric, the magnetic behavior laws and the boundary

conditions must be introduced
B = µ(H )H in Dc
B = µH in Dnc
B = µ∗(H )H in Dh
J = σE in Dc


H × n = 0 |Γh
B.n = 0 |Γb
Φ = cte |Γh1 and Γh2

where σ is the electric conductivity and µ is the magnetic permeability. Moreover, in

Dc and Dh , the magnetic behaviour of the material is not linear. µ∗ represents a homogen-

ized permeability which takes into account the electromagnetic phenomena of the laminated

stack. As Φ is a magnetic �ux imposed, this represents the source term of the problem. The

consequence of the short-circuit (in Dc ) is the establishing of current loop circulating in the

domainsDc andDh across the boundary Γc . Then, the continuity of all electromagnetic �elds

must be ensured on Γc . To solve this problem, the formulation in term of magnetic vector po-

tential will be used. The non linear solver is based on the �xed-point method applied to the

harmonic balance approach which imposes directly the steady-state. In the mini symposium,

we will be presented the details of the computation, the obtained results and their numerical

behaviour.
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Abstract

Two guaranteed equilibrated error estimators are proposed. The system of interest

is the harmonic magneto-dynamic Maxwell’s system recasted into the classical A − φ
potential formulation and approximated by the �nite element method. The �rst estima-

tor is built starting from a dual problem and is consequently available to estimate the

error of both numerical resolutions. Its reliability and local e�ciency without generic

constants are showed. The second estimator is based on a �ux reconstruction technique

and estimates the error of the primal formulation. Its guaranteed reliability and its global

e�ciency are presented. Numerical tests illustrating the theoretical results and the per-

formance of the estimators for adaptive re�nement techniques conclude the communi-

cation.

Key words: Error bounds, Finite element methods, Maxwell equations.
MSC 2010: 65M15, 78M10, 35Q61.

1 Introduction

This communication is devoted to the developement and analysis of two equilibrated a pos-
teriori error estimators for the harmonic eddy current problems. Therefore, the system of

interest is given by the quasi-static approximation of Maxwell’s equations in the magneto-

harmonic regime completed by the constitutive laws: B = µH in the whole domain D ⊂ R3

and Je = σE in the conductor domain Dc ⊂ D. Here B, H, Je and E represent, respectively,

the magnetic �ux density, the magnetic �eld, the eddy current density and the electric �eld,

while µ stands for the magnetic permeability and σ for the electrical conductivity.

The numerical solution is obtained by the �nite element method (FEM) with regular
meshes Th applied to the A − φ potential formulation [2, Section 2.1]. The approximation

(Ah ,φh ) of A by the �rst order edge elements and φ by �rst order nodal elements, respec-

tively, provides the numerical solution: Bh = curlAh in D and Eh = −iωAh − ∇φh in Dc .

We are insterested in building equilibrated error estimators which give at least a guar-

anteed upper bound for the energy norm of the error. So, we present two di�erent ways to

achieve it.

ACOMEN 2017

177



2 A posteriori error estimators

The idea consists in building error estimators based on the non-veri�cation property of the

constitutive laws for the numerical �elds. Thus the two estimators η are de�ned as

η :=

( ∑
K ∈Th

η2K

)
1/2

, with η2K := | |µ1/2 (Hh − µ
−1Bh ) | |2K + | |(ωσ )

−1/2 (Jh − σEh ) | |2K ,

where the last norm is computed only if K ⊂ Dc . (Bh ,Eh ) is the numerical solution from

the A − φ formulation and (Hh , Jh ) represent a pair of admissible �elds in the sense that

Jh ∈ H (div,Dc ) is a divergence free vector and that Hh ∈ H (curl,D) is a lowest order edge

element satisfying (1) Hh = ΠhJs − ΠhJh , with Πh a suited projection onto the lowest order

Raviart-Thomas space.

On one side, a dual construction method allows us to obtain a pair of admissible �elds

(Hh , Jh ) solving the dual potential formulation T − Ω by the FEM [2, Section 2.1]. Therefore,

the corresponding estimator estimates the following error energy norm ϵ :

ϵ :=

( ∑
K ∈Th

ϵ2K

)
1/2

, with ϵ2K := ϵ2A,φ,K + ϵ
2

T ,Ω,K ,

where ϵ2A,φ,K := | |µ−1/2 (B−Bh ) | |2K + | |ω
−1/2σ 1/2 (E− Eh ) | |2K and ϵ2T ,Ω,K := | |µ1/2 (H−Hh ) | |

2

K +

| |(ωσ )−1/2 (Je − Jh ) | |2K . Naturally the two electric contributions in the local errors ϵA,φ,K and

ϵT ,Ω,K are computed only if K ⊂ Dc . In [2, Theorems 3.5 and 3.6] we have proved that, up to

some higher order terms, η = ϵ and ηK ≤
√
2ϵK .

On the other side, a �ux reconstruction technique, as the one proposed in [1], allows

us to build the admissible �eld Jh and afterwards to prove that there exists an admissible �eld

Hh . In [3] we have proved that the upper bound ϵA,φ ≤ η holds up to some higher order terms.

Furthermore, computing the �eld Hh through the FEM to solve the magneto-static problem

(1), we have obtained the lower bound η ≤ cϵA,φ up to some higher order terms, where the

constant c > 0 does not depend on the mesh size.

3 Numerical tests

An analytical benchmark test con�rms the theoretical predictions about the two estimators

presented above. A physical benchmark shows their performance for some adaptive mesh

re�nements. It reveals in particular that the �ux reconstructed estimator exhibits a locally

e�cient behavior, in spite of the fact that the lower bound has only been globally proved.
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Abstract

We propose and analyze a mathematical model that can be useful for controlled
voltage excitation in time-dependent electromagnetism. The well-posedness of the model
is proved and an associated optimal control problem is investigated. Here, the control
function is a transient voltage and the aim of the control is the best approximation of
desired electric and magnetic Velds in suitable L2-norms. Special emphasis is laid on
an adjoint calculus for Vrst-order necessary optimality conditions. Moreover, a peculiar
attention is devoted to devise a formulation for which the computational complexity of
the Vnite element solution method is substantially reduced.

Key words: optimal control problem, non-stationary eddy current system, optimality
conditions, voltage excitation, well-posedness

MSC 2010: 49J20, 35Q60

In the last two decades, the optimal control of electromagnetic Velds has received par-
ticular attention, and here we are interested in the analysis of controlled electric or magnetic
Velds in electrically conducting media. In the majority of the recent papers devoted to this
subject steady or time-dependent electrical currents were considered as controls, while the
control of electrical voltages has been only investigated in the time-harmonic case, thus res-
ulting in a dynamical system of elliptic type.

Often, it is more realistic to control the electrical voltage in a time-dependent setting. To
our best knowledge, only the papers [1], [2], [3] considered the optimal control of electro-
magnetic Velds by the electrical voltage. A vector potential ansatz was applied to convert the
standard magneto-quasistatic Maxwell equations in a (degenerate) parabolic system.

In our presentation, the mathematical analysis for the optimal control of voltages is the
central aspect. The associated model for the electromagnetic Velds is close to that proposed
in [4]. We merge the modeling ideas of [4] with both a speciVc approach aiming at reducing
the complexity of the Maxwell equations for given voltages and some ideas of adjoining in
[5]. We should notice that, using our approach, speciVc diXculties arise in the process of
adjoining. Here, diUerential operators on the boundary, namely, the surface gradient and the
surface divergence, can be invoked to overcome this obstacle.
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We devise the weak formulation of the problem and prove that it is well-posed. Then
we furnish the formulation of the optimal control problem, and the adjoint problem and the
necessary optimality conditions are derived. Some remarks on numerical approximation are
also included.
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Abstract

We derive and analyze a mathematical model for the induction hardening process.

The domain consists of a sphere where the electromagnetic �eld is present, coil which is

connected to a source of an alternating electric current and a workpiece which is a subject

to be heated by the process of the electromagnetic induction. We take into account that

the magnetic permeability might behave di�erently in various materials e.g. in the air or

in the workpiece.

We assume a nonlinear relation between the magnetic �eld and the magnetic induc-

tion �eld. For the electromagnetic part of our model, we consider a vector-scalar po-

tential formulation of Maxwell’s equation. Evolution of temperature in the coil and the

workpiece is determined by the nonlinear heat transfer equation. The process of induc-

tion hardening creates Joule heat in the material. This term acts as a heat source in the

heat transfer equation, therefore, in order to control it, we apply a truncation function.

This formulation yields a system of three coupled equations. The coupling is provided

through the electric conductivity function on the one hand and through the Joule heating

term on the other hand.

We semi-discretize (time discretization) these equations and use the Rothe method to

show the convergence of Rothe’s functions towards a weak solution of the whole system.

The nonlinearity in the electromagnetic part is handled by the theory of monotone op-

erators. To supplement the theoretical results, we provide a numerical simulation where

we estimate the order of convergence of our numerical scheme.

Key words: Maxwell’s equation, Minty-Browder, Monotone operators, Rothe’s method
MSC 2010: 35K61, 35Q61, 35Q79, 65M12
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Abstract

In this work we derive and analyze an equivalent model for 3D Eddy Current prob-
lems with a conductive thin layer of small thickness ϵ . In our model, the conductive
sheet is replaced by its mid-surface and their shielding behavior is satis�ed by an equi-
valent transmission conditions on this interface. The transmission conditions are derived
asymptotically for vanishing sheet thickness ϵ .

Key words: Asymptotic Expansions, Eddy-Current Problems, Thin Conducting Layers,
Transmission Conditions

1 Introduction

We denote by Ω = Ωϵ
− ∪ Ωϵ

0 ∪ Ωϵ
+ ⊂ R

3 the domain of study, where Ωϵ
− corresponds to a

non-conductive linear material, Ωϵ
+ the exterior of the structure domain, and Ωϵ

0 a conductive
thin layer of constant thickness ϵ (see �gure 1). The discretisation of the conducting sheet
by FEM needs a very �ne mesh due to the rapid decay of the �eld under high conductivity.
For this, we approximate a new model de�ned in ϵ-independent domains. Let Σ be a smooth
surface, we denote by [v]Σ and {v}Σ the jump and mean of v respectively across Σ

[v]Σ = v |Σ+ −v |Σ− , {v}Σ =
1
2
(v |Σ+ +v |Σ− ), for v ∈ (C∞(Ω±))

3.

We consider the eddy current problem as follows
curlH ϵ = σ ϵEϵ + J0 in Ω
curlEϵ = iwµ0H

ϵ in Ω
div(H ϵ ) = 0 in R3

[E × n] = [H × n] = 0 on Γϵ±

where σ ϵ =

{
0 in Ωϵ

±

σ0 = ϵ
−2σ̄ in Ωϵ

0 Figure 1: A cross Section of the domain Ω
Let u be a vector �eld on Γ, then we denote by γDu = n × (u × n), and γNu = curlu × n, the
Dirichlet and Neumann data, respectively.
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2 Multiscale Expansion

Assuming that Γ is a smooth surface, then Eϵ and H ϵ can be expanded with an asymptotic
expansion in power series of the small parameter ϵ . [1]

Eϵ (x) ≈ E0(x) + ϵE1(x) + ϵ
2E2(x) + ... + O(ϵ

k ) in Ωϵ
±

H ϵ (x) ≈ H0(yα ,
h
ϵ ) + ϵH1(yα ,

h
ϵ ) + ... + O(ϵ

k ) in Ωϵ
0

Here, x ∈ R3 are the cartesian coordinated, and (yα ,h) is the local normal coordinate system,
h ∈ (− ϵ2 ,

ϵ
2 ) is the normal coordinate to Γ. The term H j is a pro�le de�ned on Γ × (− 1

2 ,
1
2 ).

The derivation is based on the expansion of the di�erential operators inside the thin layer Ωϵ
0 ,

and the Taylor expansion of Ej |Γϵ± around the mid-surface Γ.

3 Equivalent Model of Order 2

We introduce a problem satis�ed by an approximation Ekϵ of the expression E0(x) + ϵE1(x) +
ϵ2E2(x) + ... + ϵ

kEk (x) up to a residual term O(ϵk+1).
The second order approximate solution E1ϵ , solves

curl(curlE1ϵ ) = iωµJ0 in Ω±(
[γDE

1
ϵ ]Γ

{γDE
1
ϵ }Γ

)
= ϵ

( C1 0
0 C2

) (
{γNE

1
ϵ }Γ

[γNE
1
ϵ ]Γ

)
on Γ

where

C1 = −1 +
2tanh(γ2 )

γ
, C2 = −

1
4 +

coth(γ2 )
2γ

γ = exp( 3iπ4 )
√
ωµ0σ̄ .

Figure 2: A cross section of the ϵ-
independent subdomains

4 Numerical Results

Numerical experiments are performed to assess the accuracy of our model. The results are in
particular compared to the model given in [2]. Complementary simulations will be conducted
to study the robustness with respect to the sheet conductivity and the convergence of the
modelling error.
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Abstract

In this work the application of the gradient-based optimization technique to mul-

tilayer di�raction grating optimization problem is discussed. The optimization problem

is set as a merit function minimization problem. The merit function gradient is computed

through obtaining the solution of the adjoint di�erential equation. The optimization

problem is solved �rstly for a-priori determined grating pro�le shapes (binary, triangu-

lar). The application of this method for shape-independent optimization is discussed, the

possible grating parametrizations are discussed as well.

Key words: multilayer di�raction gratings, gradient-based optimization, adjoint equa-
tion.

1 Introduction

In most grating optimization problems the groove shape is given as an a-priori assumption

[1-3]. Usually some simple pro�le shapes are chosen, such as rectangular, triangular or si-

nusoidal. However, it is not guaranteed that in some particular case the grating with one

of these simple pro�le types is the optimal one. Gratings with a more complicated but still

practically realizable groove pro�le shape can exhibit more decent properties than those with

simple pro�le shapes. Moreover, it is important to make no special assumptions (except prac-

tical realizability) concerning the pro�le shape, so that it could be optimized as well. Thus,

the grating groove shape can be given as a result of the optimization process. Such type of

the optimization problem is referred to as shape-independent optimization (i.e. no a-priori

assumption on the groove shape is given).

The optimization algorithm for such type of optimization problem, when almost any

pro�le type has to be described by one and the same set of parameters, the number of op-

timization parameters is su�ciently large. Simple zero-order optimization methods (such as

Nelder-Mead method [4]) turn to be unstable when the number of the optimization paramet-

ers increases. In this case e�cient and reliable methods are required, such as gradient-based

optimization methods. They are much more stable and much faster in case of a large number

of optimization parameters, in comparison to zero-order methods.
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2 Optimization problem and numerical approach

In this work the application of the gradient-based optimization technique to multilayer dif-

fraction grating pro�le optimization problem is discussed. The multilayer di�raction grating

consists of the grating itself with some groove shape (which is likely arbitrary) and the mul-

tilayer stack with homogeneous dielectric layers. All the structure is placed on a substrate.

In this work we consider the case of one-dimensional dielectric gratings and waves with TE

polarization (however generalizations are possible).

The optimization problem is set as a merit function minimization problem. Di�erent

types of merit functions are considered. The merit function gradient is computed through

obtaining the solution of the adjoint di�erential equation [5]. The optimization problem is

solved �rstly for a-priori determined grating pro�le shapes. The application of this method

for shape-independent optimization is discussed, the possible grating parametrizations are

discussed as well.

At each step the merit function as well as its gradient are evaluated by obtaining the

solution of a full-vectorial di�raction problem for Maxwell equations (or adjoint ones), which

is obtained by means of a combination of the incomplete Galerkin’s method and scattering

matrix method [6]. This hybrid method provides e�cient solution of the problem of wave

di�raction on a multilayer grating.
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Abstract

In this paper a hybrid numerical technique for solving direct and inverse problems

of light di�raction on multilayer gratings is presented. This technique suggests using

a combination of two methods: scattering matrix method and �nite elements method

(FEM). The proposed hybrid numerical method is used for solving direct problem while

obtaining the solution of the inverse grating optimization problem. One-dimensional

multilayer re�ection gratings with di�erent groove shapes are considered and optimized

for maximum di�raction e�ciency in the minus �rst order in Littrow mounting. Nelder-

Mead method is applied for the optimization process.

Key words: multilayer di�raction gratings, �nite elements method, scattering matrix
method, hybrid method.

1 Introduction

Multilayer di�raction gratings are extensively applied in many �elds of modern engineer-

ing and applied science, in optics, photonics and laser technology [1]. Wide application of

multilayer gratings requires e�cient numerical tools for their modeling. Within this paper

we propose a hybrid numerical technique based on a combination of �nite elements method

(FEM) and scattering matrix method for solving direct problems of wave di�raction on mul-

tilayer gratings. The hybrid method takes the advantages of both techniques and thus allows

to obtain more accurate solution. The proposed method is further used for solving multilayer

grating optimization problems.

2 Problem statement and proposed numerical approach

Within this paper entirely dielectric one-dimensional multilayer re�ection gratings with bin-

ary and triangular groove shapes are considered (however the grating geometry can be much

more complicated). As the dielectric grating itself provides only redistribution of the incident

wave energy between several di�raction orders, a multilayer dielectric mirror should be used

for obtaining high re�ectance. The grating is placed on top of the multilayer dielectric mirror,

which is situated on a substrate. A plane wave is considered to be incident on a multilayer
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grating at some given angle θ and di�racted into discrete directions (i. e. di�raction orders).

Within this paper waves with TE-polarization are considered.

We propose a hybrid approach for solving the direct problem of multilayer grating mod-

eling. As the grating can have rather complicated geometry we suggest using FEM [2] for this

part of the grating since FEM suits well for arbitrary geometries. At the same time using FEM

for homogeneous layers demands unnecessarily �ne mesh and is time-consuming. For ho-

mogeneous layers in the multilayer stack (multilayer mirror) the use of the scattering matrix

method is suggested. The grating itself is considered to be the �rst layer (an inhomogeneous

one) and the FEM is used to compute the scattering matrix of this layer. Then the two methods

are coupled together via global scattering matrix (S-matrix). Such combined approach makes

the computations faster and more accurate.

3 Computations and grating optimization

In this work a free software package FreeFem++ [3] is used as a FEM-solver and allows to

calculate the S-matrix for the grating layer. The global S-matrix is calculated in MATLAB

environment.

We provide grating optimization for achieving maximal di�raction e�ciency in minus

�rst di�raction order for a given wavelength range in case of minus �rst order Littrow mount,

i.e for the case when the incident and re�ected light directions are coincident. The grating

optimization is based on a merit function minimization. The multilayer mirror parameters

are optimized independently, providing almost 100% re�ectance for a given wavelength range

and for a desired angle of incidence θ . The merit function minimization algorithm is based on

the Nelder-Mead (simplex) optimization [4]. At each step the merit function is evaluated by

obtaining the solution of a full di�raction problem for Maxwell equations, which is obtained

by means of the proposed hybrid technique. This technique provides e�cient solution of the

direct and inverse problems of wave di�raction on a multilayer grating. The optimization

problem is solved for binary and triangular gratings. The results are compared with those,

presented in [5].
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Abstract

The proposed homogenization methodology applies to periodic electromagnetic struc-

tures (photonic crystals and metamaterials), treated on two main spatial scales in the fre-

quency domain. Fields on the �ne and coarse scales are approximated via Tre�tz bases,

i.e. by functions satisfying the underlying equations and boundary conditions (Bloch

modes on the �ne scale and generalized plane waves on the coarse scale). Numerical ex-

amples demonstrate that nonlocal models can improve the accuracy of homogenization

by an order of magnitude.

Key words: Electromagnetic waves, homogenization, metamaterials, photonic crystals,
Tre�tz approximations

1 Introduction

We present a framework for non-asymptotic and nonlocal homogenization of periodic elec-

tromagnetic structures. The methodology applies to any (reasonable) size and composition of

the lattice cell, not necessarily vanishingly small relative to the vacuum wavelength. Central

in this approach is a special construction of �elds on the scale coarser that the lattice cell size,

so that the dispersion relations and – importantly – the interface boundary conditions are

satis�ed as accurately as possible.

The formulation of the problem is as follows. A given periodic structure is to be replaced

with a homogeneous sample of the same geometric shape and size, with some material tensor

M to be de�ned, in such a way that re�ection and transmission of monochromatic waves (or,

equivalently, their far-�eld pattern) remain, to the extent possible, unchanged. This descrip-

tion is made more precise in [3].

The problem has two principal scales (levels). Fine-level �elds are the exact solutions of

Maxwell’s equations for given illumination conditions and for a given sample. Coarse-level
�elds are constructed as some smoothed (averaged) versions of the �ne-level ones. These

auxiliary �elds do depend on the respective �ne-scale �elds. Although the latter are not

known a priori, suitable approximations can be used in their stead. Fields on the �ne and
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coarse scales are approximated via Tre�tz bases, i.e. by functions satisfying the underlying

equations and boundary conditions. Details of this construction for the local theory are given

in [3]. It is important to note that the coarse-level �elds are in general not volume averages

of the �ne-level ones. This approach is further extended to produce a nonlocal theory.

Fine-level Tre�tz functions can be chosen as a set of Bloch waves traveling in di�erent

directions. On the coarse scale, a natural counterpart of the �ne-scale Bloch basis is a set of

generalized plane waves. To satisfy boundary conditions as accurately as possible, the EH
amplitudes are taken as boundary averages of the periodic factors of the respective �ne-scale

Bloch modes. Least-squares approximation of the dispersion relation then yields an optimized

material tensor [3].

In [3, 1], we introduced several benchmark examples of layered media and explored their

non-asymptotic but local homogenization. Here we extend this to nonlocal homogeniza-

tion using Example A of these papers. The medium consists of a �nite number of stacked

inversion-symmetric lattice cells each of which contains three intrinsically nonmagnetic lay-

ers of widths a/4, a/2 and a/4 and scalar permittivities ϵ1, ϵ2, and ϵ1, respectively (ϵ1 = 4+0.1i
and ϵ2 = 1). We assume that λ is �xed and a changes. The numerical results depend only

weakly on the kernel width parameter τ0 when it varies within a reasonable range from ∼10–

20% of the cell size a to several cell sizes. The �ne-scale basis consisted of 2ndir Bloch modes

traveling at ndir = 7 di�erent angles in (−π/2,π/2) (two Bloch waves – “back” and “forth” –

per angle).

The accuracy of the nonlocal homogenization is much higher than that of local homogen-

ization and of the standard static (asymptotic) homogenization [2]. As one particular example,

for a metamaterial slab with a 10-cell thickness in the normal direction, nonlocal homogen-

ization reduces the absolute errors in the re�ection coe�cient by an order of magnitude uni-

formly as a function of a/λ, and also as a function of sinθinc for a �xed a/λ = 0.2.

It should be noted that the relative simplicity of layered media is deceiving; their ho-

mogenization is notoriously di�cult (e.g. [4]). Our conference presentation will also show

examples of non-asymptotic and nonlocal homogenization for photonic crystals (2D-periodic

structures).
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Abstract

Computational modelling remains key to the acoustic design of a wide range of prod-

ucts across many industries. Numerical models must be able to e�ciently predict the per-

formance of large systems across the whole audible range, which raises severe di�culties.

Recently, high-order �nite element methods have regained interest in the computational

acoustics community, due to its �exibility, robustness and computational e�ciency. This

paper examines several challenges in the development of high-order FEM for solving

large-scale Helmholtz problems.

Key words: high-order FEM; Helmholtz problems; acoustics; p-FEM; Domain Decompo-
sition Methods; FETI

1 Performance of high-order FEM for acoustics

Classical low-order �nite elements are not appropriate for resolving large-scale oscillatory

problems arising in acoustics or in vibro-acoustics. They are known to be hindered by some

large phase errors which, in practice, restricts their usage to the low frequency regime. Two

common strategies to address this issue are to resort to high-order polynomial shape func-

tions (e.g. hp-FEM), or to use Tre�tz methods where the shape functions are local solutions

of the problem (typically plane waves). Both strategies have been actively developed over

the past decades and both lead to signi�cantly reduced resolution requirements for a speci�c

problem. However, the global matrices originating from high-order models are more densely

populated and the relation between the numerical model (element size, polynomial order), the

computational cost (memory and time) and the accuracy is not well documented. In a recent

study, authors have compared higher-order polynomial approximations (p-FEM with hierar-

chic polynomials) and the wave-based discontinuous Galerkin method for two-dimensional

Helmholtz problems [1]. Di�erent benchmark problems are examined to perform a detailed

and systematic assessment of the relative merits of these two methods in terms of interpo-

lation properties, performance and conditioning. It is generally assumed that a wave-based

method naturally provides better accuracy compared to polynomial methods since the plane
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waves or Bessel functions used in these methods are exact solutions of the Helmholtz equa-

tion. However, the results in [1] indicate that this expectation does not necessarily trans-

late into a clear bene�t. The di�erences in performance, accuracy and conditioning are in

fact more nuanced than generally assumed. This con�rms that high-order FEM based on

hierarchic polynomials stands among the most competitive approaches for solving practical

Helmholtz problems at high-frequency on unstructured grids.

2 E�cient parallel solvers

The performance of the high-order FEM method relies heavily on the design of e�cient solv-

ing procedures for the resulting large, sparse, complex linear systems. On the one hand, con-

tinued e�orts are deployed to develop e�cient iterative solvers for this purpose. These meth-

ods scale well with the problem size, are highly parallelizable and generally require a limited

amount of computational resources. However, due to the properties of the underlying opera-

tor, the design of robust iterative solvers for Helmholtz problems remains a challenge. On the

other hand, direct solving procedures do not scale well with respect to problem size and fre-

quency. In practice, the amount of computational resources available is often not su�cient to

tackle the frequency range of interest. An alternative to iterative or direct solving procedures

is to resort to domain decomposition methods. While the performance of these methods is

well documented for conventional FEM, the e�ect of increasing the polynomial order remains

to be examined. In this study, a non-overlapping domain decomposition method called the

Finite Element Tearing and Interconnecting method (FETI-2LM) is analysed [3]. This method

employs Lagrange multipliers to recover the connections between the sub-domains. An iter-

ative procedure is used to solve an interface problem whereas a direct solver is employed to

factorize the local problems. The performance of the method is compared against a parallel

sparse multifrontal solver using the same number of partitions. Preliminary results indicate

that the use of FETI-2LM allows a better load balancing over all the processors. Another

important �nding is that, for a given number of processor and polynomial order, FETI-2LM

requires much less memory as compared to the algebraic approach.

Acknowledgements

This work was performed as part of the CRANE project (www.crane-eid.eu) funded by the

European Union under the Seventh Framework Programme (Grant 606844).

References

[1] Lieu, A., Gabard, G., Bériot, H., A comparison of high-order polynomial and wave-based
methods for Helmholtz problems., 321, 105-125, (2016).

[2] Bériot, H., Prinn, A., & Gabard, G. , E�cient implementation of high-order �nite ele-
ments for Helmholtz problems, International Journal for Numerical Methods in Engineer-

ing, Volume 106, Issue 3, 213-240, (2015).

[3] Farhat, C., Macedo, A., Lesoinne, M., Roux, F. X., Magoulés, F., & de La Bourdon-

naie, A., Two-level domain decomposition methods with Lagrange multipliers for the fast
iterative solution of acoustic scattering problems, Computer methods in applied mechanics

and engineering, 184(2), 213-239, (2000).

ACOMEN 2017

196



Book of abstracts of the 7th International Conference
on Advanced Computational Methods
in Engineering, ACOMEN 2017
18–22 September 2017.

On the e�ciency of anH−matrix based direct solver for
the Boundary Element Method in 3D elastodynamics

Stéphanie Chaillat1, Luca Desiderio1 and Patrick Ciarlet1

1 Laboratoire POEMS (CNRS-INRIA-ENSTA), ENSTA Paristech, Université Paris-Saclay, France

e-mails: chaillat@ensta.fr, desiderio@ensta.fr, ciarlet@ensta.fr

Abstract

The main advantage of the Boundary Element Method (BEM) is that only the domain
boundaries are discretized leading to a drastic reduction of the total number of degrees
of freedom. In traditional BE implementation the dimensional advantage with respect to
domain discretization methods is o�set by the fully-populated nature of the BEM coef-
�cient matrix. In the present work, we propose a fast method to solve the BEM system
in 3-D frequency-domain elastodynamics. Using theH -matrix arithmetic and low-rank
approximations (performed with Adaptive Cross Approximation), we derive a fast direct
solver and we study the e�ciency of low-rank approximations when the frequency is
increased. We assess the numerical e�ciency and accuracy on the basis of numerical
results obtained for problems having known solutions. The e�ciency of the method is
also illustrated to study seismic wave propagation in 3-D domains.

Key words: boundary element method, elastodynamics, hierarchical matrices, low-rank
approximations

1 Context

The main advantage of the Boundary Element Method (BEM) is that only the domain bound-
aries (and possibly interfaces) are discretized leading to a drastic reduction of the total number
of degrees of freedom (DOFs). In traditional BE implementation the dimensional advantage
with respect to domain discretization methods is o�set by the fully-populated nature of the
BEM coe�cient matrix, with set-up and solution times rapidly increasing with the problem
size.

The Fast Multipole Method (FMM) allows one to overcome the drawback of the fully-
populated matrix by introducing a fast, reliable and approximate method to compute the lin-
ear integral operator. The e�ciency of the method has been demonstrated in various �elds
including in 3D elastodynamics [1]. The FMM requires analytic closed-form expression of
the fundamental solution to approximate the integral operator and is de�ned together with
the use of an iterative solver. In 3D elastodynamics, the iteration count becomes the main
limitation to use the Fast Multipole accelerated BEM (FM-BEM) on realistic seismological
problems [2] (even though algebraic preconditioners can be developed to accelerate the con-
vergence of the iterative solver).
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2 Methodology

Other accelerated BEMs, based on hierarchical matrices (H -matrices), have been proposed
in the literature [4]. H -matrices permit to approximate the fully-populated BEM matrix by
a data-sparse matrix. When used in conjunction with an e�cient rank revealing algorithm
(for example Adaptive Cross Approximation, ACA) it leads to a data-sparse and memory ef-
�cient approximation of the original fully-populated BEM matrix. Contrary to the FM-BEM
it is a purely algebraic tool which does not require a priori knowledge of the closed-form
expression of the fundamental solutions. Such fast BEMs can be used in conjunction with
an iterative solver. In computational mechanics, the method has successfully been applied
to various problems. For example Coulier et al. [3] have applied the method to the layered
half-space elastodynamic fundamental solutions to study soil-structure interaction. Milazzo
et al. [5] have applied the method to study anisotropic elastodynamic media. Recent works
(for example [6]) have proposed the development of fast direct solvers based onH -matrices.

In the present work, we extend the ACA to problems with unknown vectors and propose
iterative and direct solvers based on H -matrices for 3-D frequency-domain elastodynamic
BEMs (based on the full-space fundamental solutions). In addition, we study the expected
e�ciency of low-rank approximations in the low and high frequency regimes.

3 Numerical e�ciency of the fast BEM

The numerical e�ciency and accuracy of the method are assessed on the basis of numerical
results obtained for problems having known solutions. In particular, a numerical study of the
e�ciency of low rank approximations when the frequency is increased is presented. Finally,
the e�ciency of the method to study seismic wave propagation in 3-D domain is demon-
strated.
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Abstract

We propose to combine an approximate Dirichlet-to-Neumann (DtN) map as an ana-

lytic preconditioner with a fast multipole accelerated boundary element method (FM-

BEM) to treat Dirichlet exterior scattering problems in 3D elasticity. The resulting bound-

ary integral equations are preconditioned Combined Field Integral Equations (CFIEs).

We provide various numerical illustrations of the e�ciency of the method for di�erent

smooth and non smooth geometries. In particular, the number of iterations is shown to

be completely independent of the number of degrees of freedom and of the frequency for

convex obstacles.

Key words: time-harmonic elastic waves, Boundary Element Method, Fast Multipole
Method, Analytical Preconditioner, approximate local DtN map.

1 Motivations

The aim of this work is to solve numerically 3D high-frequency elastic scattering problems

by a bounded rigid obstacle, namely the exterior Navier problem with a Dirichlet bound-

ary condition. To deal with the unbounded characteristic of the computational domain, we

choose to apply the integral equation method. The advantage is to reformulate equivalently,

through the potential theory, the exterior boundary-value problem as an integral equation on

the boundary of the scatterer. The dimension of the problem is thus reduced by one. How-

ever, the discretization by BEM of boundary integral equations (BIE) leads to the solution of

large and fully-populated complex linear systems. The solution of these systems is handled

by the GMRES iterative method. To decrease the overall cost of the solver, two complement-

ary ways are investigated: fast methods for the computation of matrix-vector products and

preconditioners to speed up the convergence of the solver. The FMM permits to overcome

the drawback of the fully-populated matrix by introducing a fast and approximate method to

compute the linear integral operator. In 3D elastodynamics the FM-BEM has been shown to
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be e�cient [2] with solution times of order O (N logN ) per iteration (where N is the num-

ber of BE degrees of freedom). However, the number of iterations in GMRES can signi�cantly

hinder the overall e�ciency. Preconditioning the FM-BEM is therefore an important practical

issue. Preconditioners are prescribed to yield fast convergence independently of both mesh

size and frequency.

2 Methodology and results

A possible approach consists in constructing analytic preconditioners. The idea is to con-

sider a judicious integral representation of the scattered �eld which naturally incorporates a

regularizing operator. This operator is an approximation of the DtN map. The BIEs arising

from this representation are compact perturbations of the identity operator. They are pre-

conditioned Combined Field Integral Equations (CFIEs). Several well-conditioned integral

equations based on this formalism have already been proposed in acoustics and electromag-

netism. In [1], a pseudo inverse of the principal classical symbol of the single layer boundary

integral operator - or equivalently the principal classical symbol of the Neumann trace of the

double layer boundary integral operator - is used to approach the DtN map in the frame-

work of the On-Surface Radiation Condition method. A preparatory theoretical work has

been proposed to adapt such a preconditioning technique to solve 3D high-frequency elastic

scattering problems [4]. The authors suggest strategies to overcome di�culties inherent in

elasticity, in particular the fact that the double layer boundary integral operator and its ad-

joint are not compact even for su�ciently smooth boundaries. To this end, the tangential

Günter derivative plays an important role.

We combine an approximate DtN map as an analytic preconditioner with a FM-BEM

solver. The approximations of the DtN map are derived using tools proposed in [4]. They are

expressed in terms of surface di�erential operators, square-root operators and their inverse.

Complex Padé rational approximants provide local and uniform representations of the square-

root operators. The numerical e�ciency of the di�erent proposed preconditioned CFIEs is

illustrated for several more or less complex geometries. An analytical study for the spherical

case underlines an "ideal" eigenvalue clustering around the point (1,0) for the preconditioned

CFIEs. This is not the case for the standard CFIE which has small eigenvalues close to zero.

The number of GMRES iterations is drastically reduced when the preconditioned CFIEs are

considered, independently of the frequency [3].
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Abstract

In recent work we showed that the performance of the complex shifted Laplace pre-
conditioner for the discretized Helmholtz equation can be signi�cantly improved by com-
bining it multiplicatively with a de�ation procedure that employs multigrid vectors. In
this contribution we argue that in this combination the preconditioner improves the con-
vergence of the outer Krylov acceleration through a new mechanism. This mechanism
allows for a much larger damping and facilitates the approximate solve with the precon-
ditioner. The convergence of the outer Krylov acceleration is not signi�cantly delayed
and occasionally even accelerated. To provide a basis for these claims, we analyze for a
one-dimensional problem a two-level variant of the method in which the preconditioner
is applied after de�ation and in which both the preconditioner and the coarse grid prob-
lem are inverted exactly. We show that in case that the mesh is su�ciently �ne to resolve
the wave length, the spectrum after de�ation consists of a cluster surrounded by two tails
that extend in both directions along the real axis. The action of the inverse of the pre-
condioner is to shrink the length of the tails while at the same time rotating them and
shifting the center of the cluster towards the origin. A much larger damping parameter
than in algorithms without de�ation can be used.
Key words: shifted Laplace preconditioner, de�ation, Helmholtz equation

1 De�ating the Shifted Laplace Preconditioned Operator

The advent of the complex shifted Laplacian in [1] led to a breakthrough in capabilities in
solving the Helmholtz equations. This preconditioner introduces damping and shifts small
eigenvalues away from the origin such that the outer Krylov method converges faster. For a
survey we refer to the recent monograph [2] and the references cited therein.

As the wavenumber increases while the number of grid points per wavelength is kept
constant however, the number of small eigenvalues becomes too large for the preconditioner
to handle e�ectively. This motivated the further development in [3] of a de�ation approach
aiming at removing small eigenvalues using a projection procedure. In this paper we com-
bine a multigrid de�ation technique and the complex shifted Laplacian multiplicatively. This
construction allows to
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• add a term to the de�ation operator to shift a set of eigenvalues away from zero without
signi�cantly disturbing the non-zero eigenvalues. This in turn allows to extend the
de�ation method to multiple levels in a multigrid hierarchy. This multilevel extension
can be interpreted as a multigrid method in which at least formally the complex shifted
Laplacian acts as a smoother. As in [3], the method requires a Krylov acceleration at
each level of the multigrid hierarchy;

• deduce the algebraic multiplicity of the zero eigenvalue of the de�ated operator in a
model problem analysis. This facilitates the computation of the non-zero eigenvalues;

• re-use implementations of the multigrid approximate inversion of the complex shifted
Laplacian to code the operation with the de�ation operator. In this re-use one has
to construct the coarser grid operators by Galerkin coarsening, to provide a Krylov
acceleration on the intermediate coarse levels and to provide a �exible Krylov method
on the �nest level.

We perform a model problem analysis of the preconditioned operator. The spectrum is real-
valued in case that only the de�ation is applied. It consists of a tight cluster surrounded by
two tails. These tails spread in opposite directions along the real axis as the wavenumber in-
creases. Elements in each tail correspond to the elements in the near-kernel of the Helmholtz
operator on either side of zero. The role of the preconditioner is to scale and rotate the eigen-
values of the de�ated operator. The spectrum of the operator after applying both de�ation and
preconditioning is complex-valued and consists of a cluster surrounded by two tails. These
tails spread along a line in opposite directions in the complex plane away from the cluster
with increasing wavenumber. The abscissa and slope of this line as well as the spread of the
eigenvalues along this line are functions of the damping parameter in the preconditioner. Our
results convincingly show that the use of de�ation allows to signi�cantly increase the damp-
ing parameter. Results in [3] give evidence for the fact using de�ation results in a reduction
of outer Krylov iterations and leads to a signi�cant speed-up of the computations.
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Abstract

Since a few years, contour integral techniques for solving non-linear eigenvalue prob-
lems have become an active �eld of research. This work proposes to benchmark a partic-
ular method, known as the Beyn method, in the context of lossy electromagnetic cavities
modelled by an impedance boundary condition.

Key words: �nite element method, non-linear eigenvalue problem, surface impedance
boundary condition.

1 Introduction

Contour integral methods for solving non-linear eigenvalue problems have gained in popular-
ity in recent years. This approach allows to compute all the eigenvalues enclosed in a given
contour in the complex plane by integrating some quantities on this path. Many algorithms
taking advantage of this strategy have been proposed, by varying the computed integrals and
how they are combined. In this work, the algorithm proposed in [1], usually referred to as
the Beyn method, is used and tested on lossy electromagnetic cavity problems.

2 The Beyn method

Let us consider the following (potentially non-linear) eigenvalue problem:

T (ω)v = 0 withv ∈ Cm\{0} and ω ∈ Ω ⊂ C, (1)

where T : Ω → Cm,m is an holomorphic matrix-valued function in Ω. As an illustration, in
the classical linear case T (ω) = A − Iω, where I is the identity matrix. The keystone of the
Beyn method is the following identity [1]:

1
2π

∫
Γ
f (ω)T (ω)−1dω =

N∑
n=1

f (λn)vnw
?
n , (2)

where  is the imaginary unit, Γ the boundary of Ω, f an holomorphic scalar function, vn
(resp. wn) the nth right (resp. left) eigenvector ofT , λn its nth eigenvalue and N the number of

ACOMEN 2017

203



eigenvalues enclosed by Γ. It is then possible to extract the eigenvalues ofT in Ω by probing (2)
by a random matrix V̂ ∈ Cm,k , which satis�es some rank conditions [1]. In particular, the two
following matrices are constructed:

Ai =
1

2π

∫
Γ
f i (ω)T (ω)−1V̂ dω with i ∈ {0, 1}, (3)

where the number k of column of V̂ is chosen such that A0 exhibits a rank drop. By taking
f (ω) = ω, these matrices can then be combined to construct a small matrix B with the same
spectrum as the one ofT in Ω.

The integrals of (3) are computed by using a quadrature rule. Thus the computation of
the Ais accounts to the solution of many linear systems with the columns of V̂ as right-hand-
sides and di�erent values of ω. Obtaining these solution is the most time consuming part of
the algorithm. Fortunately, since these linear systems are independent from each other, this
integration step can be e�ciently parallelized.

3 Application to lossy electromagnetic cavity simulations

In this work, the simulation of electromagnetic cavities with lossy walls is considered to test
the performance of the Beyn method. By discretizing Maxwell’s equation with the �nite
element method (FEM), and by using the Leontovich impedance boundary condition to model
the wall losses, the following operatorT can be constructed [2]:

T (ω) = K − ω2M − ω<(ω)−1/2C, (4)

where the matrices K , M andC are given by the FEM, and where< is the real part operator.
The behaviour of the Beyn method to solve the non-linear eigenvalue problem (1) with (4)

will studied and analysed. Furthermore, since the construction of the matrices A0 and A1
in (3) requires only the solution of direct problems at known frequencies, the use of a domain
decomposition method for electromagnetic waves will also be shortly discussed.
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Abstract

We focus on the construction of transmission conditions for optimized Schwarz do-

main decomposition methods applied to time-harmonic elastic wave scattering problems

solved numerically with �nite element methods.

Key words: Scattering, elastic waves, optimized Schwarz method, approximate DtN map

1 Introduction

The aim of this ongoing work is to solve time-harmonic elastodynamic scattering problems

for which the scatterer is inhomogeneous. Direct sparse solvers do not scale well for such

problems and iterative solvers exhibit poor convergence or even diverge. Domain decom-

position methods provide an alternative, combining direct sparse solvers on subproblems of

smaller sizes with an iterative Krylov solver. In this paper we investigate the impact of the

transmission conditions used between the subdmains on the convergence of the iterative al-

gorithm.

2 Problem statement

Mono-domain elastic wave problem Let us consider Ω− := {x ∈ R2 : |x| ≤ rint } with

boundary Γ and its complementary Ω+ := R2\Ω−. When illuminated by a time-harmonic

incident wave uinc , the scattering problem is formulated as follows: �nd the displacement

u in Ω+ solution to the Navier equation such that u = −uinc , on Γ, and satisfying the

Kupradze radiation conditions at in�nity. In view of a �nite element discretization, Ω+ is

truncacted by an arti�cial boundary Γ∞, which delimits the bounded domain Ω under study.

Domain decomposition We split the domain Ω into Ndom sub-domains Ωi without over-

lap. Let us denote Γi := Γ ∩Ωi , Γ
∞
i := Γ∞ ∩Ωi and Σi j := Ωi ∩ Ωj the transmission boundary.

At iteration n + 1 for a sub-domain Ωi , the classical additive Schwarz domain decomposition

method can be described as follows.
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◦ First, �nd the volume solution un+1i such that


divσ (un+1i ) + ρω

2un+1i = 0, on Ωi ,

un+1i = −uinc , on Γi ,
∂niu

n+1
i + Bun+1i = 0, on Γ∞i ,

∂niu
n+1
i + Tun+1i = дni j , on Σi j ,

where ni is the outgoing normal of Ωi , B is the operator describing boundary conditions

at in�nity, T is the transmission operator and дni j is the surface �eld given by the previous

iteration.

◦ Then update the interface unknowns: дn+1ji = −д
n
i j + 2Tu

n+1
i , on Σi j .

3 Transmission operators

Multiple choices are possible for the transmission operator T , the optimal operator being the

Dirichlet-to-Neumann map associated to the complementary of the subdomain. This operator

being nonlocal (and thus computationally expensive), we investigate two approximations:

◦ Lysmer and Kuhlemeyer condition: T0u = −i[(λ + 2µ)kpup + µksus ], with kp and ks
the wavenumbers associated with up (the longitudinal pressure wave with a vanishing

curl), and us (the transverse shear wave with a vanishing divergence) respectively.

◦ Square-root condition: T1u = −i[(λ + 2µ)kp (
∆Σ

k2

p,ϵ
+ I)1/2up + µks ( ∆Σ

k2

s,ϵ
+ I)1/2us ], with

∆Σ the tangential Laplacian operator and kα,ϵ := kα + 0.39ik1/3α H
2/3

, α = s,p. This

condition is then localized using complex Padé approximants [1, 2].

4 Preliminary results

We consider an annulus-shaped domain Ω, split into two

concentric subdomains with ρ = 1 kg.m−3, ω = 2π s
−1

and

λ = µ = 1 Pa. The �gure displays the eigenvalues of the it-

eration operator for the two transmission conditions. These

spectra lead respectively to 49 and 23 GMRES iterations in

the domain decomposition algorithm as implemented in [1].
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Abstract

We deal with the �nite element solution of 3D time-harmonic acoustic wave prob-

lems de�ned on unbounded domains, but computed using cuboidal computational do-

mains with arti�cial boundaries. We combine a standard �nite element method for the

Helmholtz equation with high-order absorbing boundary conditions (on the faces of the
domain) and compatibility relations (on the edges and the corners) that provide an arbi-

trary high accuracy.

Key words: Helmholtz equation, Finite element method, Radiation boundary condition,
Corner compatibility
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The �nite element methods must be combined with speci�c boundary techniques, such

as perfectly matched layers and non-re�ective boundary conditions, to accurately simulate

the radiation of wave�elds at the arti�cial boundaries of truncated computational domains.

Padé-type high-order absorbing boundary conditions (HABCs) can provide an arbitrary high

accuracy [2], but they are generally limited to regions with smooth boundaries. We propose a

comprehensive strategy for cuboidal domains, with treatments for the edges and the corners.

Let the �eld u (x) governed by the Helmholtz equation ∆u + k2u = 0 on the cube Ω =
[−L,L]3. On the faces of Ω, we consider the HABC obtained by approximating the square root

in the exact non-re�ective boundary operator thanks to the (2N + 1)th-order Padé expansion

with a θ -rotation of the branch cut [2]. On the face belonging to the plane x = L, the HABC

can then be written as

∂xu = ıke
ıθ /2 *

,
u +

2

M

N∑
n=1

cn (u + un )+
-
, with cn = tan(nπ/M ) and M = 2N + 1. (1)

This condition involves N auxiliary �elds un de�ned only on the face and governed by

k2
(
eıθcn + 1

)
un + k

2eıθ (cn + 1)u +
[
∂yy + ∂zz

]
un = 0, n = 1 . . .N . (2)

Because of the spatial partial derivatives in Eq. 2, boundary conditions must be prescribed on

the boundary of the face (i.e. on the edges of the cube) for each auxiliary �eld un .
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(a) Solution (without comp. rel.) (b) Solution (with θ = 0) (c) Solution (both strat., θ = π/4)

(d) Error (without comp. rel.) (e) Error (with θ = 0) (f) Error (both strat., θ = π/4)

Figure 1: Solutions and errors for the benchmark with HABCs (N = 4). Three cases are shown:

without compatibility relations (left), without rotating branch cut (middle), with both strategies (right).
Isosurfaces of the solutions (scale: [-0.2,0.2]) and the errors (scale: [-0.015,0.015]) are represented in

only half the domain. We use a mesh made of approx. 10
6

tetrahedron and P1 elements.

In our strategy, we introduce new relations that close the system and that ensure its

compatibility without any supplementary approximation. They are derived by manipulating

the equations (Eqs. 1-2) corresponding to the di�erent faces, and by introducting auxiliary

�elds and auxiliary equations on each edge (N 2
per edge) and each corner (N 3

per corner).

The result is a multi-dimensional solver with equations to be solved on the volume, the faces,

the edges and the corners of Ω. See [1] for a time-dependent version of this solver.

As preliminary 3D �nite element results, we present simulations of a spherical wave

generated inside a cubic domain (Fig. 1). HABCs are prescribed on all the faces of the domain.

By comparing the three cases, we see the positive e�ect of both the compatibility relations

and the rotating branch cut on the quality of the solution. When using both strategies (Fig.

1f), the remaining error corresponds to the classical numerical dispersion caused by the mesh.
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Abstract

We present a non-overlapping optimized Schwarz method for the vector Helmholtz

equation, based on a Padé approximation of the Magnetic-To-Electric map. It exhibits a

quasi-optimal convergence in terms of both the wavenumber and the mesh re�nement.

We also show numerical results highlighting this behavior and sumarize the last devel-

opments of GetDDM, the software we built that is designed to solve large time-harmonic

wave propagation problems in parallel and using domain decomposition method.

Key words: Domain Decomposition Method, Time-harmonic wave propagation

1 Introduction

In terms of computational methods, solving three-dimensional time-harmonic acoustic or

electromagnetic wave problems is known to be challenging, especially in the high frequency

regime. Among the various approaches that can be used to solve them, the Finite Element

Method (FEM) with an Absorbing Boundary Condition (ABC) or a Perfectly Matched Layer

(PML) is widely used for its ability to handle complex geometrical con�gurations and materi-

als with non-homogeneous properties. However, the brute-force application of the FEM in the

high-frequency regime leads to the solution of very large, complex-valued and possibly in-

de�nite linear systems. Direct sparse solvers do not scale well for such problems, and Krylov

subspace iterative solvers exhibit slow convergence or even diverge. Domain decomposition

methods provide an alternative, iterating between subproblems of smaller sizes, amenable to

sparse direct solvers.

2 Optimized Schwarz Method

We consider a perfectly conducting obstacle Ω− with a smooth boundary Γ surrounded by a

(�ctitious) absorbing boundary Γ∞ with a simple ABC, and denote by Ω the domain of bound-

ary Γ
⋃

Γ∞. When illuminated by a time-harmonic incident electric �eld Einc
, the obstacle

generates a scattered �eld E, solution of the exterior electromagnetic scattering problem:
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
curl curl E − k2E = 0, in Ω,

γT (E) = −γT (E), on Γ,

γ t (curl E) + ık(γT (E)) = 0, on Γ∞,
(1)

where k := 2π/λ is the wavenumber, λ the wavelength, n is the outward unit normal to

Ω, γT v = n × (v × n), γ tv = n × v and curl a := ∇ × a. The propagation domain Ω is

now decomposed in N subdomains Ωi , i = 1, . . . ,N , without overlap. The iterative Jacobi

algorithm for the computation of the electric �elds (En+1i )1≤i≤N at iteration n + 1 involves,

�rst, the solution of the N following problems (i = 1, . . . ,N )
curl curl En+1i − k2 En+1i = 0, in Ωi ,

γTi (En+1i ) = −γTi (Einc), on Γi ,

γ ti (curl En+1i ) + ık(γTi (En+1i )) = 0, on Γ∞i ,

γ ti (curl En+1i ) + S(γTi (En+1i )) = gni j , on Σi j := ∂Ωi
⋂
∂Ωj , ∀j , i ,

(2)

and then forming the quantities gn+1ji through

gn+1ji = γ
t
i (curl En+1i ) + S(γTi (En+1i )) = −gni j + 2S(γTi (En+1i )), on Σi j . (3)

The operator S is the transmission operator through the interfaces Σi j and plays a major role

in the convergence speed of the algorithm. Problems (2) and (3) could be rewritten in a linear

system based on the interface quantities g only, and solved using a Krylov subspace solver.

In [1], we propose a new transmission operator S, given by approximating the MtE operator

with a complex Padé expansion (C0, A` and B` are given by the expansion):

S
GIBC(Np , α , ε )

(γT (E)) = ık ©­«C0 +

Np∑̀
=1

A`X (I + B`X )−1
ª®¬
−1 (
I − curlΣ

1

k2ε
curlΣ

)
(γT (E)), (4)

with X := ∇Σ 1

k2

ε
divΣ − curlΣ

1

k2

ε
curlΣ, and where kε = k + ıε .

After a review of the transmission conditions proposed in the literature, we will see that

condition (4) leads to a quasi-optimal algorithm, in terms of both the wavenumber and the

mesh re�nement. The numerical results that will be presented have been achieved with Get-

DDM [2], an open-source software that we built, dedicated to solve in parallel time-harmonic

wave propagation problems using the domain decomposition method. Problems with several

billion degrees of freedom have been successfully solved on massively parallel computers

using GetDDM. The last improvements of our software will also be presented.
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Abstract

This work is concerned with numerical solutions of time-fractional nonlinear para-

bolic problems by a class of L1-di�erence methods. The analysis of L1 methods for time-

fractional nonlinear problems with delay is limited mainly due to the lack of a funda-

mental Gronwall type inequality. We establish such a fundamental inequality for the

L1 approximation to the Caputo fractional derivative. In terms of the Gronwall type in-

equality, we will provide error estimates of a fully discrete linearized di�erence scheme

for this kind of problems.

Keywords: time-fractional nonlinear parabolic problemswith delay, L1-di�erence scheme,
error estimates, Gronwall inequality, linearized schemes

1 Introduction

We study numerical solutions of the time-fractional nonlinear parabolic equation with delay

CDα
t u −

∂2u

∂x2
= f (x , t ,u,u (x , t − s )), (x , t ) ∈ Ω × (0,T ], (1a)

with the following initial and boundary conditions

u (x , t ) = ϕ (x , t ), (x , t ) ∈ Ω × [−s, 0], (1b)

u (x , t ) = 0, (x , t ) ∈ ∂Ω × [0,T ], (1c)

where Ω = [a,b] and s > 0 is a �xed delay parameter. The fractional derivative
CDα

t of order

0 < α ≤ 1 is de�ned in Caputo sense.

In the past decades, developing e�ective numerical methods and rigorous numerical ana-

lysis for the time-fractional PDEs have been a hot research spot, see e.g. [2]. Numerical meth-

ods can be roughly divided into two categories: indirect and direct methods. The former is

based on the solution of an integro-di�erential equation by some proper numerical schemes

since time-fractional di�erential equations can be reformulated into integro-di�erential equa-

tions in general, while the latter is based on a direct (such as piecewise polynomial) approxim-

ation to the time-fractional derivative [1]. Direct methods are more popular in practical com-

putations due to its ease of implementation. One of the most commonly used direct methods
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is the so-called L1-scheme, which can be viewed as a piecewise linear approximation to the

fractional derivative and which has been widely applied for solving various time-fractional

PDEs [3]. However, numerical analysis for direct methods is limited, even for a simple linear

model (1) where s = 0 and f (u) = L0u.

The analysis of L1-type methods for the linear model was studied by several authors,

while the convergence and error estimates were obtained under the assumption that L0 ≤ 0

in general, see [4]. Recently, this condition was improved in [6], in which a time-fractional

nonlinear predator-prey model was studied by an L1 �nite di�erence scheme and f (u) was

assumed to satisfy a global Lipschitz condition. The stability and convergence were proved

under the assumption T α < 1

LΓ(1−α ) where L denotes the Lipschitz constant. This restriction

condition implies that the scheme is convergent and stable only locally in time.

It is well known that the classical Gronwall inequality plays an important role in analysis

of parabolic PDEs (α = 1) and the analysis of corresponding numerical methods also relies

heavily on the discrete counterpart of this inequality. Clearly, the analysis of L1-type numer-

ical methods for time-fractional nonlinear di�erential equations (0 < α < 1) has not been

well done mainly due to the lack of such a fundamental inequality. In [5], the authors aimed

to present the numerical analysis for several fully discrete L1 Galerkin FEMs for the general

nonlinear equation 1 at s = 0 with any givenT > 0. The key to their analysis is to establish a

Gronwall type inequality for a positive sequence satisfying

Dα
τ ω

k ≤ λ1ω
k + λ2ω

k−1 + дk .

As an extension to the work of [5], the main purpose of our contribution is to discuss the nu-

merical analysis for fully discrete L1 di�erence schemes for the general nonlinear equation (1)

with �xed delay with any given T > 0. Our analysis is done by constructing a new Gronwall

type inequality for a positive sequence satisfying

Dα
τ ω

k ≤ λ1ω
k−1 + λ2ω

k−2 + λ3ω
k−n + дk ,

where Dα
τ denotes an L1 approximation to

CDα
t , and λ1, λ2 and λ3 are all positive constants.
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Abstract

We discuss some results of maximal regularity for abstract evolution equations con-
taining a fractional time derivative.

Key words: Abstract evolution equations, Fractional derivatives, Maximal regularity
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1 Introduction

We consider linear abstract evolution equations of the form

Dαu (t ) = Au (t ) + f (t ), t ∈ [0,T ] (1)

where we indicate with Dα the time derivative of order α , belonging to [0,2] in the sense of
Riemann-Liouville or of Caputo. (1) is supplemented by suitable initial conditions in t = 0.
A is a linear unbounded operator in the Banach space X . We illustrate results of maximal
regularity in spaces of continuous and Hölder continuous functions. We recall that a maximal
regularity result establishes a linear and topological isomorphism between spaces of data and
spaces of solutions. The abstract results are applicable to mixed boundary values problems,
where, typically, A is the realization of a linear partial di�erential operator in a space domain,
with suitable boundary conditions.
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Abstract

Solution of the Dirichlet boundary value problem for the fractional Allers’ equation

in di�erential and di�erence settings are studied. By the method energy inequalities a

priori estimate is obtained for the solution of the problems. The obtained results are

supported by the numerical calculations carried out for test problem.

Key words: a priori estimate, di�erence scheme, fractional derivative, numerical analy-
sis, stability and convergence.

1 Introduction

Moisture movement in is capillary porous environment is described by the equation of Aller

[1]. Boundary value problems for classical Allers’ equation is studied in [2]. However, it was

found that the fractional derivatives are more e�ective in describing the properties of vis-

coelastic �uid. In this regard, there are models for fractional Allers’ equation. The method

of energy inequalities has been applied for the numerical solution of boundary value prob-

lems for di�erential equations of fractional order with variable coe�cient [3] and [4]. The

stability and convergence of the numerical scheme for solving the boundary value problem

for generalized Allers’ equation are analysed [5] by energy method.

2 Dirichlet boundary value problem

In rectangle QT = {(x , t ) : 0 ≤ x ≤ l , 0 ≤ t ≤ T} let us study the boundary value problem

∂α
0tu =

∂

∂x

(
k (x , t )

∂u

∂x

)
+ ∂α

0t
∂

∂x

(
η(x , t )

∂u

∂x

)
− q(x , t )u + f (x , t ), (1)

u (0, t ) = 0, u (l , t ) = 0, 0 ≤ t ≤ T , (2)

u (x , 0) = u0 (x ), 0 ≤ x ≤ l , (3)

where ∂α
0tu (x , t ) =

1

Γ(1−α )

t∫
0

us (x , s ) (t − s )−α ds is a Caputo fractional derivative of order α ,

0 < α < 1, 0 < c1 ≤ k (x , t ),η(x , t ) ≤ c2, ηt (x , t ) ≥ 0, q(x , t ) ≥ 0 on QT .
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Theorem If k (x , t ) ∈ C1,0
(
QT

)
,η(x , t ) ∈ C1,1

(
QT

)
,q(x , t ), f (x , t ) ∈ C

(
QT

)
, 0 < c1 ≤

k (x , t ),η(x , t ) ≤ c2, ηt (x , t ) ≥ 0, then the solution u (x , t ) of the problem (1)–(3) is satis�es the a
priori estimate

| |u | |2W 1

2
(0,l ) + D

−α
0t | |ux | |

2

0
≤ M

(
D−α
0t | | f | |

2

0
+ | |u0 | |

2

W 1

2
(0,l )

)
, (4)

whereM > 0 – is a known constant independent from T .

3 Di�erence schemes for the Dirichlet boundary value prob-
lem

Let η(x , t ) = η(x ). In rectangle QT we introduce the grid ωhτ = ωh × ωτ , where

ωh = {xi = ih, i = 0, 1, . . . ,N , hN = l} ,
ωτ =

{
tj = jτ , j = 0, 1, . . . , j0, τ j0 = T

}
.

To problem (1)–(3) we assign the di�erence scheme:

∆α
0tj+σy = Λ1y

(σ ) + ∆α
0tj+σΛ2y + φ, 1 ≤ i ≤ N − 1, 1 ≤ j ≤ j0 − 1, (5)

y (0, t ) = 0, y (l , t ) = 0, 0 < t ≤ T , (6)

y (x , 0) = u0 (x ), 0 ≤ x ≤ l , (7)

where σ = 1 − α
2

, φ = f
(
xi , tj+σ

)
, ∆α

0tj+σy is the di�erence analogue of the Caputo fractional

derivative of order [4].

The di�erence scheme (5)–(7) has the order of approximation O
(
τ 2 + h2

)
[4].

Theorem The di�erence scheme (5)–(7) is absolutely stable and its solution satis�es a priori
estimate

‖y j+1‖2
1
≤ ‖y0‖2

1
+
l2T α Γ(1 − α )

4c1
max

0≤j≤j0
‖φ j ‖2

0
, (8)

where
‖y‖2

1
= ‖y‖2

0
+ ‖
√
byx̄ ]|2

0
, ‖y‖2

0
= (y,y), ‖y]|2

0
= (y,y],

(y,v ) =
N−1∑
i=1

yivih, (y,v] =

N∑
i=1

yivih.
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Abstract

This work is motivated by an extension of both the two-dimensional Burgers–Fisher
and Burgers–Huxley equations, that considers Riesz fractional di�usion and advection.
Initial-boundary conditions which are positive and bounded are imposed on a closed and
bounded interval, and a �nite-di�erence method is proposed to approximate the solutions
of the fractional model. The methodology is a linear and implicit technique which is
based on fractional centered di�erences. We show in this manuscript that the method
can be expressed in vector form using a Minkowski matrix under suitable conditions. The
main properties of Minkowski matrices are used then to establish the existence and the
uniqueness of the solutions of the �nite-di�erence method, as well as the capability of the
technique to preserve the positivity and the boundedness. Additionally we show that the
method is a second-order consistent technique which is stable and convergent, with �rst
order of convergence in time and second order in space. Some illustrative simulations
show that the scheme is capable of preserving the positivity and the boundedness of the
numerical approximations.

Keywords: advection-di�usion-reaction partial di�erential equations, Riesz space-fractional
equation, structure-preserving numerical method, fractional centered di�erences, stability
and convergence analyses

MSC 2010: 65N06, 65C20, 35C05, 35K20

1 Introduction

Throughout we will assume that a,b ∈ R satisfy a < b, and suppose that γ , λ and T are
positive numbers such that γ < 1. Let ϕ : [a,b] → R and ψ1,ψ2 : [0,T ] → R be continuously
di�erentiable functions whose ranges are all subsets of (0,γ ) or of (0, 1). Assume additionally
that the compatibility conditions ϕ (a) = ψ1 (0) and ϕ (b) = ψ2 (0) are satis�ed. Let 1 < α ≤ 2
and 0 < β < 1, and de�ne Ω = (a,b)× (0,T ). In this work, we will suppose thatu : Ω → R is a
su�ciently smooth function that satis�es the initial-boundary-value problem with fractional
di�usion

∂u

∂t
(x , t ) =

∂αu

∂ |x |α
(x , t ) − λu (x , t )

∂βu

∂ |x |β
(x , t ) + u (x , t ) f (u (x , t )), ∀(x , t ) ∈ Ω,

such that



u (x , 0) = ϕ (x ), ∀x ∈ (a,b),
u (a, t ) = ψ1 (t ), ∀t ∈ (0,T ),
u (b, t ) = ψ2 (t ), ∀t ∈ (0,T ),

(1)
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for each (x , t ) ∈ Ω. For practical purposes, the function f adopts the form of Huxley’s reac-
tion,

f (u (x , t )) = (1 − u (x , t )) (u (x , t ) − γ ), ∀(x , t ) ∈ Ω, (2)

of Fisher’s reaction law,

f (u (x , t )) = 1 − u (x , t ), ∀(x , t ) ∈ Ω, (3)

2 Aims and scope

Some e�orts have been done already to discretize (1) considering fractional or integer deriva-
tives. For instance, some linear discretizations have been published in [1]. In that report,
the authors provide a positivity- and boundedness-preserving discretization of the Burgers–
Huxley equation. The method reported in that work requires solving computationally a linear
system represented by a sparse square matrix with number of rows equal to the number of
spatial nodes of the discretization. On the other hand, other papers have considered a non-
linear approach which has resulted in more e�cient numerical methods that preserve the
positivity, the boundedness and the monotonicity of solutions for di�usive partial di�erential
equations of the Burgers–Huxley and Burgers–Fisher types [2].

ur present work is motivated by the linear approach in view that more numerical prop-
erties can be guaranteed using such discretizations. In this manuscript, we will consider a
two-dimensional generalization of (1) with di�usion and reaction terms that include Riesz
space-fractional derivative. We will also consider a generalized reaction term that extends
many particular models from mathematical biology and physics, including equations from
population dynamics and nuclear physics [3, 4].
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Abstract

In this manuscript, we consider an initial-boundary-value problem governed by a
(1 + 1)-dimensional hyperbolic partial di�erential equation with constant damping that
generalizes many nonlinear wave equations from mathematical physics. The model con-
siders the presence of a spatial Laplacian of fractional order which is de�ned in terms
of Riesz fractional derivatives, as well as the inclusion of a generic continuously dif-
ferentiable potential. It is known that the undamped regime has an associated positive
energy functional, and we show here that it is preserved throughout time under suit-
able boundary conditions. To approximate the solutions of this model, we propose an
explicit �nite-di�erence discretization based on fractional centered di�erences. Some
discrete quantities are proposed in this work to estimate the energy functional, and we
show that the numerical method is capable of conserving the discrete energy under the
same boundary conditions for which the continuous model is conservative. Moreover,
we establish suitable computational constraints under which the discrete energy of the
system is positive. The method is consistent of second order, and is both stable and con-
vergent. The numerical simulations shown here illustrate the most important features of
our numerical methodology.

Keywords: dissipative fractional wave equation, Riesz space-fractional equations, dissipation-
preserving method, fractional centered di�erences, stability and convergence analyses

MSC 2010: 65N06, 65C20, 35C05, 35K20

1 Introduction

In this manuscript we let T > 0 and γ ∈ R+ ∪ {0}, and suppose that a,b ∈ R satisfy a < b.
Throughout this work we will assume that 1 < α ≤ 2 and let Ω = (a,b)× (0,T ) ⊆ R2. We will
employ here the notation Ω to represent the closure of Ω in R2 under the standard topology,
and will assume that G : R2 → R, that ϕ,ψ : [a,b] → R and that f ,д : [0,T ] → R are all
continuously di�erentiable functions that satisfy the compatibility conditions ϕ (a) = f (0),
ϕ (b) = д(0),ψ (a) = f ′(0) andψ (b) = д′(0). Moreover, we will suppose thatG is nonnegative,
that G ′′ is bounded and that u : Ω → R is a su�ciently smooth function that satis�es the
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initial-boundary-value problem

∂2u

∂t2
(x , t ) −

∂αu

∂ |x |α
(x , t ) + γ

∂u

∂t
(x , t ) +G ′(u (x , t ),ux (x , t )) = 0, ∀(x , t ) ∈ Ω,

such that




u (x , 0) = ϕ (x ), ∀x ∈ (a,b),
∂u

∂t
(x , 0) = ψ (x ), ∀x ∈ (a,b),

u (a, t ) = f (t ), ∀t ∈ (0,T ),
u (b, t ) = д(t ), ∀t ∈ (0,T ).

(1)

For the sake of convenience, we let u (x , t ) = 0 for each x ∈ (R \ [a,b]) × [0,T ] and de�ne

∂αu

∂ |x |α
(x , t ) =

−1
2 cos( πα2 )Γ(2 − α )

∂2

∂x2

∫ ∞

−∞

u (ξ , t )

|x − ξ |α−1
dξ , ∀(x , t ) ∈ Ω. (2)

2 Aims and scope

In the present work, we will consider problem (1), for which some positive energy functional
is preserved under suitable boundary and parameter conditions. Motivated by the early works
by L. Vázquez [1, 2] and D. Furihata [3, 4], we will design an explicit and structure-preserving
method that conserves the dissipation of the energy of the system. More concretely, our
approach will be based on the use of fractional centered di�erences, and we will provide
discrete schemes for both the solution of the problem and the total energy of the system. We
will show here that, under appropriate conditions on the computational parameters, the total
energy of the discretized system is likewise a positive function of the time. To that end, various
alternative expressions of the energy invariants will be derived. The preserved quantities will
be used then to show that the method proposed in this manuscript is not only consistent but
also stable and convergent of second order. Some simulations will show the capability of the
method to preserve the energy under the analytic conditions derived in this work.
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Abstract

External �ows around obstacles such as airfoils or cylinders involve a wake which
consists of a vortex street. These vortices prevail in the �ow even far downstream. In
a numerical simulation for such �ows, it is often necessary to restrict the size of the
calculation domain in order to limit the computational resources needed for the calcu-
lations. As a result, the out�ow boundary requires appropriate boundary conditions,
which allow the vortices to leave the computational domain without distortion or re-
�ection. In the present work, we implement the well-known non-re�ecting boundary
condition algorithm (NSCBC: Navier-Stokes Characteristic Boundary Conditions) which
has been proposed by Poinsot and Lele [2] , in a two-dimensional compressible Navier-
Stokes solver based on the Spectral Di�erence Method [1]. The simulation program,
which uses an unstructured triangular grid, has been designed at the EMP MDF Labo-
ratory for the numerical simulation of compressible external �ows. The implementation
of the non-re�ecting boundary condition involves the solution of a modi�ed system of
equations, which suppresses incoming waves that are traveling normal to the boundary.
Space discretization of this system of equations is performed via polynomial interpola-
tion. The validation of the boundary condition implementation algorithm in the subsonic
case is performed by carrying out a series of tests involving the perturbation of a uniform
�ow with an entropy wave , an acoustic wave, and a convected vortex. The re�ection
level of the waves at the out�ow boundary is investigated and some results are shown in
�gure (1) and �gure (2) .

Key words: acoustic wave, characteristic boundary conditions, spectral di�erence,
unstructured grid, viscous �ow
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(a) (b)

Figure 1: Involving acoustic wave through the outlet boundary on (a) and the re�ected wave
shown on (b) is about 1% of the incoming wave.

Figure 2: Involving entropy wave through outlet boundary
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Abstract

The sixth-order accurate �nite-surface discretization for the incompressible Navier-
Stokes equations are presented. This discretization retains all the advantage of the stag-
gered without needing to de�ne the staggered cell or co-volume and it is 6X faster than
the fourth-order compact �nite volume method.

Key words: �nite volume method, Navier-Stokes equations, �nite surface method, stag-
gered grid, high-order schemes

1 Introduction

The work on higher-order methods applied to turbulent �ows on collocated grid were discour-
age at �rst as the early adopter found that the improvement over the second-order scheme
were small [1, 2]. Later, a fourth-order compact scheme is reported to deliver the same pre-
dictions as the second-order scheme while using the total grid points 8X lesser [3]. At this
comparable level of accuracy, the fourth-order deliver the result 10X faster. The reason why
staggered grid is much better than the collocated grid at solving turbulent �ow was further
investigated in [4]. It was found that half-a-cell distance of the staggered is the reason which
means it can resolve the high-frequency components better and thus the high-frequency
components of the �ow are kept at the momentum instead of diverted to the pressure by
the fractional-time-stepping method. In another word, the staggered grid satis�es the mass-
conservation better than the collocated one. Thus, what would happen if we could have the
exact equation for the mass-conservation?

Consider the arrangement of the �ow variables in staggered �nite volume discretization
(Fig.1(a)) showing the positions of the u and v momentums relative to the pressure cell. If we
shrink the control volumes of the momentum cells towards the boundary of the pressure cell,
the momentums become the surfaces de�ned on the faces of the pressure cell as the thick-
nesses approach zero. It is obvious that the sum of these momentum �ux is the mass balance
over the pressure cell. The �nite surface method (FSM) de�nes the velocities as surfaced-
averaged values living on a set of connected volumes where the mass is set to be conserved
similar to �nite volume method. The equation for the mass balance becomes an analytical
discrete equation. Therefore the only equation left to approximate is the momentum equa-
tion. We present the sixth-order approximation of the FSM with three variants of pressure
treatments and its validation in the next section.
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Figure 1: (a) Arrangement of �ow variables on staggered grids consisting of pressure cells
(clear),u-momentum (dash) andv-momentum (gray) cells. (b) The �nite surface discretization
constricts the momentum control volumes on to the surfaces of the pressure cell.

N FSM6:PE4 FSM6:PCO4 FVM4:P4E

tm tp /nit nit tm tp /nit nit tm tp /nit nit

1282 21.1 1.07 88 21.6 1.78 55 31 0.94 406
2562 78.1 7.24 41 86.4 10.26 46 130.2 11.96 96
5122 396.0 34.80 25 440.0 47.50 32 524.0 43.88 100

Table 1: Number of iteration needed to reach 10−6 relative volumetric imbalance, the CPU-
time (tm) in millisecond spent in the momentum equation and the time used for projection
step per pressure iteration (tp/nit ).

2 Results

In this work, we repeat the same doubly periodic shear layer widely used in the literature.
The sixth-order FSM with 1702 cells can match the result of the FVM on 2562 cell. The pro-
posed method, not only more accurate than the fourth-order FVM (which it should), it is also
signi�cantly faster than the fourth-order Tab.1. This table suggests that in two dimensions,
the newly developed sixth-order FSM is 4.5X faster than the fourth-order FVM per time step
which is translated to 6X times faster in a time-dependent problem.
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Abstract

In this work, we propose numerical approximation methods for a nonlinear parabolic

problem describing slightly compressible Darcy �ow in porous media. The problem is dis-

cretized by multipoint �ux mixed �nite element methods, which have been successfully

applied earlier to the incompressible case. The convergence of the proposed methods

and related computational results are discussed in detail.

Key words: mixed �nite element, multipoint �ux approximation, nonlinear parabolic
equation, slightly compressible �ow

MSC 2010: 35K55, 65M60, 76M10, 76S05

1 Problem formulation

Slightly compressible single-phase Darcy �ow in porous media is governed by the following

nonlinear parabolic initial-boundary value problem

∂t (ϕρ(p)) + ∇ · u = f in Ω × (0,T ], (1a)

u = −
ρ(p)

µ
K(∇p − ρ(p)g) in Ω × (0,T ], (1b)

p = д on ΓD × (0,T ], (1c)

u · n = 0 on ΓN × (0,T ], (1d)

p = p0 in Ω × {0}, (1e)

where Ω ⊂ R2 is a convex polygonal domain with Lipschitz continuous boundary given

by ∂Ω = ΓD ∪ ΓN such that ΓD ∩ ΓN = ∅. In this formulation, p is the �uid pressure, u
represents the Darcy velocity, ϕ is the porosity of the medium, ρ(p) denotes the �uid density,

µ is the kinematic viscosity, K is a symmetric and positive de�nite tensor representing the

rock permeability, g is the gravitational vector, and n denotes the outward unit normal on

∂Ω. The nonlinear relationship between ρ and p is given by

ρ(p) = ρref e
cf (p−pref ),

where ρref and pref are the reference density and pressure, respectively, and cf is the �uid

compressibility constant.

In this work, we propose and analyze multipoint �ux mixed �nite element (MFMFE)

methods to approximate the solution to (1). In doing so, we extend the results reported in [1]

for the incompressible problem using the techniques discussed in [2].
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2 Full discretization

Let Th be a conforming, shape-regular and quasi-uniform partition of Ω into convex quad-

rilateral elements, where h = maxE∈Th diam(E). The spatial discretization of problem (1)

is based on the MFMFE method, which considers the lowest order Brezzi-Douglas-Marini

mixed �nite element spaces, Vh andWh , for the velocity and pressure variables, respectively.

The no-�ow boundary condition (1d) is imposed by introducing the subspace V 0

h ⊂ Vh as

V 0

h = {v ∈ Vh : v · n = 0 on ΓN }.
On the other hand, we de�ne the equidistant time grid 0 = t0 < t1 < . . . < tN = T , where

tn = nτ and τ = T /N , for n = 0, 1, . . . ,N ∈ N. As for the the time integration, we consider

the backward Euler method. The fully discrete scheme yields approximations pn+1h and un+1h
to the solution of (1) at time tn+1, namely: for n = 0, 1, . . . ,N − 1, �nd (un+1h ,p

n+1
h ) ∈ V

0

h ×Wh
such that(

ϕ
ρ(pn+1h ) − ρ(p

n
h )

τ
,w

)
+ (∇ · un+1h ,w) = (f

n+1,w), w ∈Wh , (2a)(
µ

ρ(pn+1h )
K−1un+1h , v

)
Q

= (pn+1h ,∇ · v) + (ρ(p
n+1
h ) g, v) − 〈д, v · n〉ΓD , v ∈ V 0

h , (2b)

p0h = Shp0, (2c)

where f n+1 = f (·, tn+1) and Shp0 denotes the L2(Ω)-projection of p0 onto Wh . The notation

(·, ·)Q in equation (2b) stands for the application of a numerical integration formula. This

formula is based on the trapezoidal rule applied on the reference element, and can be either

symmetric or non-symmetric. Two variants of the method are thus obtained: a symmetric

MFMFE scheme, which applies to smooth quadrilateral meshes, and a non-symmetric MFMFE

method, designed to preserve the accuracy on general quadrilateral grids (see [1] for details).

Newton’s method is used to solve the nonlinear system of equations arising from (2).

We discuss the convergence of the proposed methods, and present computational exper-

iments illustrating their numerical behaviour.
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Abstract

The radiative transfer equation (RTE) for participating medium has been solved using

mixed �nite element approach. Using such method a banded-sparse matrix system is

formed. Such matrix systems are proven to be advantageous over the more typical block-

matrix systems formed using traditional �nite element methods, while solving the RTE.

Key words: radiative transfer equation, vectorial �nite element, mixed �nite element

1 Introduction

Radiative transfer equation (RTE) is often modeled in its discrete form, using discrete set of

ordinates (sm) and discrete set of radiative intensities Im [1]:

(sm · ∇ + κ + σs ) Im (x ) = σs
∑Na

n=1ωnIn (x )Φm,n + κIb ∀m = 1, ...,Na (1)

Each equation in this set of Na equations depicts the transport of radiative intensity

through a participating media. Left hand side of the equations sums up the losses due to

absorption, scattering and transport, while on the right hand side summation term represents

source due to in-scattering e�ect and the Plank’s black body source at a given temperatureT .

Mixed and traditional �nite element solution of RTE

Computation of radiative �eld using this set of coupled equations requires spatial discretiz-

ation, in order to form a solvable linear system. Among other approaches, SUPG-FEM has

proven to be a good candidate. Iterative application of such method for each equation yields

a huge block matrix composed of Na ×Na submatrices, a matrix structure classical to coupled

system of equations. Using a trial function v ∈ Vh ⊂ H 1 (D) the diagonal submatrix of this

huge block matrix is given by variation formulation of left hand side of (1), while the o�-

diagonal submatrices are formulated using variation formulation of the �rst term on right

hand side. Naturally, one can see that the same �nite element spaceVh has to be used in an

iterative manner to formulate the full block matrix.
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Alternative to this traditional approach, we introduce SUPG based on mixed �nite ele-

ment method (MFEM). This notion was �rst introduced in 1967 by Herrmann [2], in con-

nection with elastic theory, in which both stresses and strains were simultaneously calcu-

lated. Based on the same principle, using MFEM, Na radiative intensities (Im) are simul-

taneously calculated. The problem consists in searching a vector of radiative intensities

I = [I1 I2 · · · INa ]
T

utilizing a vectorial test function V = [v1 v2 · · · vNa ]
T

. The chosen

functional space which contains this vectorial test function is given by H 1 (D)Na = H 1 (D) ×
H 1 (D) × ... ×H 1 (D) =

∏Na
i=1H

1 (D). The SUPG-MFEM weak formulation can be built using

the vectorial trial function H = V + γS · ∇V, γ : Ω 7→ R+, over the domain of interest D:∫
D

[(S · ∇I+βI) : (H)] dx −

∫
D

[(ΘI) : (H)] dx =

∫
D

[(κIb1) : (H)] dx (2)

2 Results

The use of SUPG-MFEM formulation yields a sparse matrix structure contrary to ordinary

SUPG-FEM which results into a huge block matrix structure (See Figure 1). This proposed

SUPG-MFEM method has various advantages: the obtained banded sparsed matrix system

can be much e�ciently solved using LU factorization, faster matrix building is observed, paral-

lelization in angles and space is applicable in a straight forward manner etc. All these advant-

ages that will be presented at the conference prove the superiority of SUPG-MFEM method

for solving RTE.

Figure 1: Matrix obtained by ordinary FEM (left) and by Mixed FEM (right).
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Abstract

We investigate the strong stability preserving (SSP) transformed general linear meth-

ods (GLMs) with Runge-Kutta (RK) stability properties. We present examples of SSP

transformed GLMs with RK stability, which have order p and stage order q=p, number of

the external approximations r and number of the internal approximations s=r=p+1. We

�nd that they are better than the others SSP methods.

Key words: general linear methods, inherent Runge-Kutta stability, Runge-Kutta stabil-
ity, strong stability preserving

1 Introduction

Aim of this work is to continue the investigation of SSP GLMs already started by Spijker in [4],

and by Izzo and Jackiewicz in [2], to solve systems of ordinary di�erential equations (ODEs).

In order to increase the probability to �nd SSP GLMs, we multiply a classic GLM (see [2]) by

a nonsingular trasformation matrix T ∈ Rr×r , and so we obtain a new class of transformed

GLMs of the form {
Y [n] = h(A ⊗ I)f

(
tn−1 + ch,Y [n]

)
+ (U ⊗ I)y[n−1],

ȳ[n] = h(B ⊗ I)f
(
tn−1 + ch,Y [n]

)
+ (V ⊗ I)y[n−1],

(1)

n = 1, 2, . . . ,N , where the transformed coe�cient matrices A,U,B, and V are de�ned as

follows

A = A, U = UT−1, B = TB, V = TVT−1,

with A,U,B and V coe�cient matrices of the original GLM. Moreover, I is the identity matrix

of dimensionm, the dimension of the initial ODEs and the transformed vector of the approx-

imated solution in tn is given by

y[n] = (T ⊗ I)y[n].

For such methods the vector of the internal approximations or stages satis�es

Y [n] = y(tn−1 + ch) +O(hq+1),
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and the vector of the external approximations, which propagates to the next step tn satis�es

y[n] =

p∑
k=0

(qk ⊗ I)hky(k )(tn) +O(hp+1),

with the same vectors qk ,k = 0, ...,p used to determinate y[n−1] at previous step.

2 SSP transformed GLMs with RK stability

In order to construct SSP transformed GLMs with RK stability we use the approach by Spijker,

[4]. So, we assume that they satisfy the following SSP relations

(I + γA)−1U ≥ 0, I − (I + γA)−1 ≥ 0,

V − γ B(I + γA)−1U ≥ 0, γ B(I + γA)−1 ≥ 0,
(2)

whereγ is some constant, and where these inequalities should be interpreted componentwise.

Then, we compute the SSP coe�cient de�ned by

C = C(c,A,U,B,V) = sup

{
γ ∈ R : γ satis�es (2)

}
,

by solving the constrained minimization problem

F (γ ) := −γ −→ min,

with a very simple objective function F (γ ) = −γ , subject to the nonlinear constrains (2).
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Abstract

A cell is a complex biochemical reactor. Various biochemical reactions take place in

it to carry out di�erent tasks. One such task is metabolism of the ubiquitous environ-

mental carcinogenic compounds namely PAHs into biological cells which is crucial to

model. These PAHs are lipophilic which partition into membranes and di�use through

them to target the DNA and thereby cause toxicity or tumor. Therefore, there is a dire

need of the development of the model for the assessment of these carcinogenic chemical

compounds. Earlier, a 3D model was developed in order to investigate the cellular fate

after being a�ected by PAHs but this model was lacking the presence of Nucleolemma

with its enzymatic reactions, which is an important factor to be considered. Thus, a

new 3D model was developed which in addition to the other domains, consists of Nucle-

olemma along with its enzymatic reactions. Homogenization approach was used for the

numerical treatment of cytoplasm to scale down the complexity of the model. The nu-

merical results of the extended model were validated against the numerical results of old

model and the experimental results, where the results of extended model clearly show

the improvement and convergence to the experimental results not only qualitatively but

quantitatively as well.

Key words: Mathematical Modeling, PAHs, Nucleolemma, Homogenization, Reaction,

Di�usion, Cell

1 Introduction

Because of the complex real-world problems, mathematical models are now proceeding in

almost all the scienti�c �elds including biology and medicine. In many eras computational

simulations have become an important aspect to understand the mathematical modeling of the

given systems. To make good grasp of the cell related issues such a di�usion, restrain synergy

and chastise prodigy illustration of a bio-chemical processes, such as membrane transport, dif-

ferent theoretical studies and computational models are in progress. Mathematical modeling

of a biological cell is complex due to its schematic structure. When these biological cells are

exposed to the harmful environmental pollutants, they undergo a series of reaction- di�usion

processes. In our previous paper [1], the process of the �rst phase of metabolism was partially
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studied and modeled whereas the process of the second phase of metabolism was included in

[2]. The �rst model mimics the cellular fate after being a�ected by the foreign toxic chemical

compounds. The model was developed in 2D considering the shape of a cell as a ball. Later,

the model was extended by considering the di�erent cellular shapes. Then the model was de-

veloped in 3D where only �ve subdomains namely extracellular medium, cellular membrane,

cytoplasm, nuclear membrane and nucleus were considered, where Nucleolemma and perin-

uclear space were not included. Nucleolemma is a highly regulated membrane barrier which

controls the inward and outward transportation of the compounds and protects the nucleus.

In this study, our aim is to develop a 3D mathematical model including Nucleolemma and

its enzyme reactions, which narrates reaction-di�usion mechanism within and outside the

cell due to these carcinogenic factors. Also, the homogenization technique will be used in

cytoplasm for the numerical simulation.

2 Materials and Methods

In this model, we are considering seven subdomains. We considered that the extracellular

medium contains water where hydrolysis process takes place. It was assumed that no reaction

takes place in membranous structure, only di�usivity was considered. Cytoplasm consists of

aqueous part (cytosol) and the small bodies of the cell (mitochondrion, endoplasmic reticu-

lum and vacuoles etc.). PAH undergoes three reactions in cytoplasm, �rstly; the hydrolysis

process, secondly; reacting with proteins present in cytoplasm leaving protein-adductsand

thirdly; Glutathione conjugation. Similarly, reactions take place in perinuclear space and �-

nally in the nucleus where DNA-adducts are formed due to which mutation or the demolition

of the cell may cause. The di�usion-reaction process gives rise to the system of Partial Dif-

ferential Equations, which were handled numerically using �nite element method.

3 Results and Discussion

The formulated model is executed on a software COMSOL MULTIPHYSICS [3] which is based

on the principle of FEM. The numerical results of the extended model were validated against

the numerical results of old model and the experimental results, where the results of newly

developed model clearly show the improvement and convergence to the experimental results

not only qualitatively but quantitatively as well. The aim of this research work is to set a stage

for a comprehensive computational approach that can be re�ned against exact measures of

enzyme and molecular behavior in cells.
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Abstract

Inverse problems have been attracting much attention because of their ability to re-

cover unknown parameter values in a given system starting from measurements. A �xed

structure of the physical behavior within the system is each time provided by means

of a behavioral model. This paper describes a methodology for uncovering the struc-

ture of the system and thus of the models starting from measurement data in a complex

nonlinear dynamic mechatronic system. We propose the use of a mixed norm inverse

problem solver that is reformulated as a second order cone programming problem. An

electromechanical drivetrain is considered as case study where the proposed methodo-

logy is validated upon.

Key words: dynamical systems, data-driven modeling, inverse problems, optimization,
sensing

1 Introduction and problem statement

Mechatronic systems such as electromechanical drivetrains are exhibiting increasing com-

plexity making the modelling of their behavior starting from �rst principles di�cult. Due to

advances in low cost sensor technology and the advantages that can be reached by exploiting

interconnectivity these so-called cyberphysical systems give rise to increasing data in their

application �elds [1]. Industrial applications can bene�t from the data to increase their per-

formance and moreover, correct interpretation of the measurement data is required to enable

further advancements in the operation of these systems. This paper discusses the possibility

of discovering the governing equations in an exemplary electromechanical drivetrain exhib-

iting strong nonlinear behavior.

The application that is considered is an electromechanical drivetrain, as depicted in Fig. 1.

It consists of an electrical machine driving a mechanical load consisting of a �ywheel having

a certain unknown intertia and mechanical links such as cam follower components. Meas-

urement data can be captured by means of an encoder measuring the angular displacement

(ϕ) and velocity (
Ûϕ). In a state space formulation with the time-varying state vector (dimen-

sionality p = 2) x(t) = [ Ûϕ(t),ϕ(t)] we have following nonlinear ordinary di�erential equation

Ûx(t) = f(x(t)). We assume here that the measurements y(t) ≡ x(t) and thus the states are

perfectly observable. A measurement matrix is de�ned as the consecutive n measurements of

the states: X = [x1, . . . ,xn] and a matrix Y ≡ ÛX.
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(a) (b)

Figure 1: (a) Electromechanical drivetrain consisting of a �ywheel having inertia, mechanical

links and encoder. (b) Measurement data of the angular displacement and velocity of the

considered electromechanical drivetrain.

2 Methods and conclusions

The aim of this study is to uncover the function f(·) of the nonlinear dynamics in an elec-

tromechanical drivetrain. First steps to enable the identi�cation of the governing equations

was proposed by [2] using so-called symbolic regression. It balances the complexity of the

model with model accuracy. A reduction in the complexity of �nding the structure of the

underlying phenomena was presented in [3]. The methodology makes use of a library of m
pre-de�ned candidate basis functions that are gathered in F(X) and a sparse regression on

the candidate functions is carried out: ÛX = F(X)Λ. Λ = [λ1, . . . ,λp ] contains vectors that

determine which candidate function is active and need to be sparse for balancing model com-

plexity and accuracy. In this paper we investigate the optimization problem for �nding proper

λ values as being a formulation of mixed l1l2 norm inverse solver:

Λ∗ = argmin

Λ
‖Y − F(X)Λ‖2F + α |Λ|

l2
l1

(1)

The regularization term is |Λ|l2l1 =
∑N

n=1

√∑K
k=1 Λ

2

nk and ‖ · ‖F is the Frobenius norm of a

matrix. We reformulate (1) as a second-order cone programming problem. The advantage of

this problem formulation is that it allows to recover time-dependent variations on f(·) because

l1 sparsity is enforced in the basis functions domain and l2 on the state space domain.

Figure 1b depicts the measured angular displacement and velocity of the considered driv-

etrain. We de�ned a library of functions consisting of polynomial functions (x, x2, etc.), and

sinusoidal functions (sin(x), sin(2x), etc.). For various regularization parameter values for α ,

optimal Λ∗ are found, each time corresponding with a certain structure for the function f(·).
The e�ect of the regularization parameter, i.e. larger α correspond with more sparse regular-

ization, on the recovered nonlinear dynamical system is analyzed. From the optimization (1)

the following nonlinear ordinary di�erential equation was derived
Üϕ = Q − д(ϕ) Ûϕ2 − c Ûϕ with

д(ϕ) =
∑

6

k1=1
∑

6

k2=1 ak1k2 sin(k1ϕ) sin(k2ϕ) with constants Q , c ak1k2 .
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Abstract

FE �eld simulation results for accelerator cavities on unstructured meshes exhibit
numerical �uctuations which are unacceptable when studying high-precision beam dy-
namics in an accelerator cavity. An improvement is obtained by post-processing the �eld
by applying Kirchho� integrals including the Green function associated with the elec-
tromagnetic wave equation.

Key words: �nite-element method, electromagnetic-�eld simulation, accelerator cavities

1 Introduction

Relativistic particles are accelerated along the axis of a superconducting cavity with the help
of a resonating electric �eld. The eigenmode is solved from the eigenvalue problem related
to Maxwell’s wave equation, discretrised by a 3D higher-order �nite-element (FE) method
(Fig. 1). Asymmetries in almost cylindrically symmetric cavities, e.g., due to power couplers,
are responsible for transverse electric �elds which are by orders of magnitude smaller than the
accelerating �eld but nevertheless generate transverse kicks causing an unacceptable de�ec-
tion of the beam. An accurate characterisation of the transverse components is challenging
because of numerical �uctuations introduced by the FE method and by an unstructured mesh
(grey in Fig. 2a).

upstream
HOM coupler

downstream
HOM coupler

beam tube

9-cell cavity

input coupler

Figure 1: TESLA cavity (exemplary mesh of 136.443 tetrahedra).
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(a)

x0 = 0 mm
y0 = 0 mm

LPW: 16

Deviation in the order of 10-4 max(Ez)

(b)

x0 = 0 mm
y0 = 0 mm

LPW: 16

No deviation recognizable

Figure 2: Transversal y-component of the electric �eld strength: (a) results from FE simula-
tion for a mesh with 16 lines per wavelength (LPW) before and after post-processing using
Kirchho� integrals; (b) results for a symmetric mesh and after post-processing using Kirchho�
integrals.

Figure 3: Source points rq used for evaluating Kirchho� integrals at a closed hull S . For
visualisation reasons, only one collocation point per surface triangle is displayed.

2 Kirchho� Integrals

A smooth �eld distribution is reached by evaluating the Kirchho� integral for the electric �eld
strength, i.e.,

E =
∫
S
((n × jcB)kG − (n × E) × ∇G − (n · E)∇G ) dS

with Green function

G =
e−jkr

4πr
, r = |rP − rQ | , (1)

wave number k = ω
c , angular frequency ω, speed of light c , observation point rP within the

examined volume and source point rQ ∈ S , at a closed surface S embedding the respective
volume. For convenience, a cylindrical surface S slightly inside the cavity is chosen (Fig. 3).
The results are shown in green in Fig. 2a.

3 Symmetric Mesh

A tetrahedral mesh constructed as to re�ect as much as possible the cylindrical symmetry of
central parts of the cavity structure allows to further improve the results (Fig. 2b).
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Abstract

Numerical simulations of �oating bodies, heaving under wave loading, are performed
by coupling a �uid solver and a motion solver. During each time step in the transient
simulation, a converged solution is needed between the wave-induced �uid �eld around
and the motion of the body. For some geometries in particular, a very slow converging or
unstable solution is found. The mechanism for this non-physical instability is identi�ed
and an accelerated coupling scheme is derived for speeding up the simulations.

Key words: CFD, two-phase �ow, rigid body motion, accelerated coupling scheme
MSC 2010: 65L20, 70E15, 76T10

1 Introduction

This paper presents a study on the coupling between a �uid solver and a motion solver by
interchanging the total force F acting on a �oating body. The two-phase �uid solver with
dynamic mesh handling, interDyMFoam, is a part of the Computational Fluid Dynamics (CFD)
toolbox OpenFOAM. The incompressible Navier-Stokes (NS) equations are solved together
with a conservation equation for the Volume of Fluid (VoF). In this paper, that �uid solver is
coupled to a rigid body motion solver, restricted to the heave motion only.

We were able to identify the mechanism for a numerical instability between the �uid and
motion solver and to derive an accelerated coupling scheme, which are explained below.

2 Governing equations

The acceleration of the bodya is derived from Newton’s second law: F =ma and subsequently
integrated to the velocity v and position z respectively. In general, the �uid solver calculates
the total force F by a discrete sum of the pressure forces p and the viscous forces τ over the
faces of the body completed with body’s total weight. In order to identify the source of the
instability, the total force acting on the body is not calculated by solving the NS equations. In-
stead, a 1D simpli�ed mass-spring-damper system is used in which the damping contribution
is neglected (b = 0). Its equation of motion is explicitly formulated in terms of a by:
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Fn+1 =man+1 = −maa
n − bvn − k(zn − zeq) (1)

an+1 = −ma

m
an − k

m
(zn − zeq) (2)

in which ma is the added mass, b the damping coe�cient, v the body’s velocity, k the spring
constant representing the hydrostatic restoring force and zn − zeq the distance between the
Centre of Mass (CoM) at the previous time step n and the CoM in equilibrium.

A linear stability analysis proves that (2) is only stable ifma < m. Otherwise, an implicit
formulation is needed for a (3a) using a relaxation method with relaxation factor α (3b).

an+1i+1 = −
ma

m
an+1i − k

m
(zn+1i − zeq) (3a)

an+1i+1 = αa
n+1
i+1 + (1 − α)an+1i (3b)

in which i + 1 and i are the current and previous iteration during the same time step n + 1.

3 Accelerated coupling scheme

The coupling between motion and �uid solver is accelerated by using an optimal value for
α (4a). Consequently, only one sub-iteration is needed for (3b) if ma is known. However,
in general ma is unknown and varies from time to time (e.g a �oating body in an irregular
sea-state). Therefore Newton’s second law F =ma is linearised andma is estimated by (4b).

αoptimal =
1

1 +ma/m
(4a)

ma = −
Fn+1i − Fn+1i=1

an+1i − an+1i=0
(4b)

As a result, the new acceleration is obtained by substituting (4b) in (4a) and apply (3b).
As an example, the accelerated scheme is applied for a free decay test of a 2D �oating block
for whichma = 3m and compared to (3b) using α equal to 0.05 and 0.45. It is clearly shown in
Fig. 1, that (4a) accelerates the convergence signi�cantly between the �uid and motion solver.

100 110 120 130 140 150 160 170 180
Iterations

1.219

1.222

1.225

a 
[m

/s
2

]

α = 0.05
α = 0.45
eq. (4a)

Figure 1: Acceleration as a function of the number of iterations for di�erent values of α and
eq. (4a). During each time step, 20 iterations are performed.
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Abstract

This work analyzes, from a mathematical point of view, the arti�cial mixing of water

- by means of several pairs collector/injector that set up a circulation pattern in the wa-

terbody - in order to prevent the undesired e�ects of eutrophication. The environmental

problem is formulated as a constrained optimal control problem of partial di�erential

equations, where the state system is related to the velocity of water and to the concen-

trations of the di�erent species involved in the eutrophication processes, and the cost

function to be minimized represents the volume of recirculated water.

Key words: Optimal control, Partial di�erential equations, Eutrophication, Water circu-
lation, Restoration

MSC 2010: Primary: 49M25, 35Q93; Secondary: 90C56

1 Introduction

This work deals with arti�cial circulation as a shallow water aeration technique. Large wa-

terbodies (for instance, lakes or reservoirs) get much of their oxygen from the atmosphere

through di�usion processes. Arti�cial circulation increases water’s oxygen by forcefully cir-

culating the water to expose more of it to the atmosphere. Two techniques are the most com-

mon: air injection and mechanical mixing. The former has been analyzed, from an optimal

control viewpoint in a few works (see, for instance, [3] and the references therein). However,

in this work we will focus our attention on the latter that, as far as we know, has remained

unaddressed in the mathematical literature.

In this work we will introduce a mathematical formulation of the environmental prob-

lem as a control/state constrained optimal control problem of partial di�erential equations.

Then, we will analyze the optimal control problem and �nally, we will deal with the nu-

merical resolution of the problem, presenting a complete numerical algorithm and a realistic

computational example.

2 Mathematical formulation of the control problem

In order to address the mitigation of the harmful e�ects of eutrophication by controlling the

�ow pumped by the injectors/collectors, we assume that their geometry and position are �xed
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beforehand, and that we can only act on the pumped �ow rate. Thus, the following optimal

control problem needs to be solved:

(PB ) min{J (g) : g ∈ Uad and

1

µ (ΩC )

∫
ΩC

u(t ) dx ∈ KC , ∀t ∈ [0,T ]}, (1)

where g(t ) = (д1 (t ),д2 (t ),д3 (t ),д4 (t )) is the �ow rate in each group (see �gure 1), Uad ={g ∈ U : −c1 ≤ дk (t ) ≤ c2, ∀t ∈ [0,T ], ∀k = 1, . . . , 4}, with U a suitable func-

tional space, KC = [λm
1
, λM

1
] × · · · × [λm

5
, λM

5
], J (g) =

∫T
0
д(t )2/2dt is the cost functional

and u = (u1,u2,u3,u4,u5), with u1, u2, u3, u4 and u5 the concentration of, respectively, ni-

trogen, phytoplankton, zooplankton, organic detritus, and dissolved oxygen, is the solution

of a Michaelis-Menten kinetics eutrophication model (see, for instance, [1]) coupled with a

modi�ed Navier-Stokes equations hydrodynamic model (see, for instance, [2]).

C1

C2

T 1T 2

C3

C4

T 4T 3

⌦

⌦C

El dominio de control que hemos considerado es el rectángulo inferior (sombreado en verde) de dimensiones
⌦C = [0, 14] ⇥ [0, 2] ⇢ ⌦. Los parámetros que hemos empleado para la resolución numérica de las
ecuaciones de estado han sido los siguientes:

Parámetro Valor Unidades

⌫ 1.50e � 06 m2/s
⌫tur 1.00e � 02 m2

KN 3.80e�02 mg/l
KF 2.00e�01 mgC/l
Kmf 3.80e�07 s�1

Kmz 3.78e�07 s�1

Kr 3.80e�07 s�1

Kz 4.30e�06 s�1

Krd 2.30e�05 s�1

⇥ 1.05e+00 -
✓ 2.40e+01 �C
µ 1.50e�04 s�1

'1 3.00e+01 m�1

'2 0.00e+00 m�1 por mgC/l
I0 1.00e+02 Cal/m2 por s
IS 1.00e+02 Cal/m2 por s
Cfz 1.10e+00 -
CT 1.06e+00 -
µi 1.00e�05 m2/s

Para las discretizaciones temporales hemos considerado un paso de tiempo de 3600 segundos (1 hora) y,
para la discretización espacial, hemos considerado un mallado regular formado por triángulos de longitud
caracteŕıstica 1/4 metros (3075 vértices). Los espacios de elementos finitos que hemos empleado para las
discretizaciones espaciales han sido el minielemento (P1b, P1) para el modelo hidrodinámico y P1 para

37

Figure 1: Physical domain Ω, showing the control domain ΩC and the four pumping groups
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Abstract

Gmsh is an open-source three-dimensional �nite element mesh generator with a
build-in CAD engine and post-processor. Its design goal is to provide a fast, light and
user-friendly meshing tool with parametric input and advanced visualization capabili-
ties. After 20 years of development, Gmsh enjoys a thriving community of several thou-
sand users and developers worldwide. Its continuing development is driven by the need
of researchers and engineers in academia and industry alike for a small, open-source pre-
and post-processing solution for grid-based numerical methods. In this talk I will give a
brief overview of the Gmsh project, present the new constructive solid geometry features
introduced in Gmsh 3.0, and highlight some features currently under development.
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Abstract

A new cell-centered �nite volume scheme called the pyramid scheme (P-scheme) is
proposed for three-dimensional di�usion equations on general polyhedral meshes with
nonplanar faces.

Key words: Finite volume scheme, polyhedrons with nonplanar faces, 3D di�usion equa-
tion.

1 The pyramid scheme

Consider the stationary di�usion problem :−∇·(κ∇u) = f , in Ω ⊂ R3,u (x ) = д, on ∂Ω,
For σ = ABCD, the expression of the normal �ux across σ of P-scheme reads

FK,σ =
1
2
τσ |
−−→
AC ×

−−→
BD |(uK − uL + α (uC − uA)) + β (uD − uB ))). (1)

where α = (
−−−→
K ′L′,−→n BD )/(

−−−→
A′C ′,−→n BD ), β = (

−−−→
K ′L′,−→n AC )/(

−−−→
B′D ′,−→n AC ). and −→n AC (or −→n BD ) is

obtained by rotating −−→AC (or −−→BD) anticlockwise by π
2 with respect to the vector −−→AC × −−→BD. The

cell-vertex unknowns uA,uB ,uC and uD should be eliminated by the method in [1].

Figure 1: the face(left), the stencil(middle left ),rand3D mesh (middle right), 3D distorted mesh
(right)
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2 Numerical results

Consider the meshes as shown in Figure1. Let the problem be as follows:

u (x ,y) =

{
(x2 + 10) (y − y2) (z − z2), x < 0.5,
(5x2 + 9) (y − y2) (z − z2), else, κ =

{
5, x < 0.5,
1, else.

The precission is shown in Table 1,compared with the O-scheme in [1].The discretization
cost of the O-scheme is almost 20 times more than that of the O-scheme as shown in Table 2.

Table 1: Errors of the P-scheme solutions compared with the O-scheme solutions

3D distorted mesh rand3D mesh
number of cells P-scheme O-scheme di�erence P-scheme O-scheme di�erence

4 × 4 × 4 2.09e-02 2.10e-02 1.0e-04 2.21e-02 2.20e-02 1.0e-04
8 × 8 × 8 5.57e-03 5.39e-03 1.8e-04 5.75e-03 5.73e-02 2.0e-05

16 × 16 × 16 1.42e-03 1.32e-03 1.0e-04 1.49e-03 1.47e-03 2.0e-05
32 × 32 × 32 3.55e-04 3.20e-04 3.5e-05 3.73e-04 3.68e-04 5.0e-06
64 × 64 × 64 8.87e-05 7.86e-05 1.0e-05 9.36e-05 9.22e-05 1.4e-06

Table 2: The comparison of the CPU time (seconds) of discretization on the 3D distorted mesh.
smooth coe�cient discontinuous coe�cient

number of cells P-scheme O-scheme P-scheme O-scheme
64 × 64 × 64 2.0e-02 5.3e-01 3.0e-02 5.6e-01
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Abstract

Risk models, recently studied in the literature, are becoming increasingly complex.
It is rare to �nd explicit analytical relations to calculate the ruin probability (see [2]).
Indeed, the stability issue (see [1, 7]) occurs naturally in ruin theory, when parameters
in risk can not be estimated than with uncertainty. However, in most cases, there are no
explicit formulas for the ruin probability. Hence, the interest to obtain explicit stability
bounds for these probabilities in di�erent risk models (see [4, 6]). In this study, we are
interested to the stability bounds of the univariate classical risk model established by
Kalashnikov (2000) (see [6]) via the regenerative processes approach (see [5]). By adopt-
ing an algorithmic approach, we have implemented this approximation and determined
numerically the bound of ruin probability in the case of large claims (heavy-tailed distri-
bution (see [3, 8, 9])). After presenting numerically and graphically the stability bounds,
an interpretation and comparison of the results have been done.

Keywords: Heavy-tailed distribution, large claims, regenerative process, risk model,
ruin probability, stability.
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Abstract

We discuss the heat exchange between the in�ltrated water and matrix of unsatu-
rated porous media. This contribution is motivated by thermal isolation properties of
facades. The mathematical model consists of coupled nonlinear system of parabolic-
elliptic equations representing the conservation of heat energy and water mass balance.
Mathematical model for water transport in unsaturated porous media is represented by
Richard’s type equation. Heat transport by water includes water �ux, molecular di�usion
and dispersion. Heat exchange in pours is modeled by temperature jumps between water
and matrix, transmission coe�cient and saturation. A successful experiment scenario is
suggested to measure the transmission coe�cient.
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Abstract

A novel methodology that generates simulation-ready general-purpose material mi-

crostructure models is presented. A computational framework is devised to (i) generate

random packs of convex inclusions, (ii) obtain accurate geometric representations for the

pack, and (iii) create a high-quality conformal mesh. This approach is innovative because

of its simplicity, ease of automation, and potential to account for uncertainties such as the

e�ect of a material’s microstructure. A variation of the Lubachevsky-Stillinger algorithm

with collision detection is used to produce polydisperse random distributions and orient-

ations of particles. The framework generates packs from a number of inclusion shapes

into one of four di�erent geometric domains. Several pre-processing options are avail-

able such as the ability to enforce periodic boundary conditions, take a 2D cross-section,

and manipulate particles. Several examples are presented to demonstrate applications in-

cluding the modeling of solid propellants, energetic materials, composites, and granular

materials.

Key words: 3D mesh generation, materials microstructure, particle packing

1 Introduction

The macroscopic properties of materials can be directly linked to their characteristic micro-

structure through modeling an appropriate representative volume element (RVE). RVE-based

modeling techniques have been used to predict fracture in solid propellants [1], understand

damage in concrete [2], and study the surface remodeling of trabecular bone [3]. We present

an engineering solution for generating and discretizing simulation-ready microstructures

comprised of convex-shaped inclusions based on known information such as the inclusion

geometry and volume fractions.

2 Methods

In the �rst step, a digital representation of a material’s microstructure that has the desired

properties is generated. This was done using a random packing algorithm previously im-

plemented in the software package Rocpack [4]. Inclusions with radii of zero are randomly

assigned to the periodic or �xed-boundary domain at time t = 0 with random velocities. Each

mode (type of inclusion) grows linearly in time with a rate distribution across all modes that

is based on the input size fractions. Inclusions stop growing when the desired volume fraction
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(a) (b)

Figure 1: Arbitrary inclusions in a RVE. a) conforming volumetric mesh, and b) cross-section

of the same mesh at z = 0.5. (Periodicity is not enforced)

(the total volume of inclusions to the volume of the domain) is reached for all phases or after

the interval between collisions becomes too small to continue.

To develop a conformal volumetric mesh, a pre-processing step is then applied to the

pack. The Rocpack output is modeled using the OpenCASCADE geometry kernel of the soft-

ware GMSH [5]. The particles may touch in a jammed pack, which may lead to singularities

during numerical analysis or technical challenges during the discretization step, causing ex-

cessive number of elements. To avoid these pitfalls, an optional uniform shrinkage in particle

radius can be applied. The resulting reduction in volume fraction is insigni�cant.

The tool also enables cross section analysis of the microstructure. First, inclusions are

translated to standard STL representation. A slicing algorithm then intersects a plane with

the facets of the model. This slice is then processed further to remove collinear points and

smooth sharp corners. The simpli�ed geometry is still representative of the randomly packed

microstructure and can be used for 2D analyses.

In the last step, the generated pack is discretized using GMSH into a conforming mesh

in either 2D or 3D. A sample conforming mesh is shown in Figure 1-a. Each mode from the

packing algorithm is de�ned in a set for simulation purposes, as shown in Figure 1-b. The

output mesh then can be written into a variety of standard formats supported by GMSH for

subsequent analysis and simulation steps.
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Abstract

With the use of the coordinate transformation which Vxes the boundaries, the V-
nite element formulation is presented for the space variable. Its convergence and error
bounds in the energy norm and for the Vrst time derivative in the L2-norm are estab-
lished. In particular, the error in the energy norm and for the Vrst time derivative in
the L2-norm is shown to converge with the optimal order O(hr) with respect to the
mesh size h and the polynomial degree r ≥ 1. To obtain the fully discrete solution,
the generalized-α method is adapted to the semidiscrete formulation . Finally, some
numerical simulations that validated the theoretical Vndings are exhibited.

Key words: Galerkin Vnite element method, generalized-α method, KirchhoU model,
moving boundaries, Newmark schemes.

MSC 2010: 65N12, 65N30, 35K65, 35J65.

1 Introduction

The following KirchhoU-Carrier model for the hyperbolic-parabolic equations has been con-
sidered in this work.

(ρ1ut)t + ρ2ut − (1 +M(t,

∫
Ωt

|Du|2dx))D2u = f(x, t) in Qt

u(α(t), t) = u(β(t), t) = 0 on (0, T ) (1)

u(x, 0) = u0(x) ut(x, 0) = u1(x) in Ω0 = (α(0), β(0)),

where Qt is a bounded noncylindrical domain deVned by

Qt = {(x, t) ∈ R2 : α(t) < x < β(t), for all 0 < t < T},

Ωt = {x ∈ R : α(t) < x < β(t), 0 < t < T}.

ρ1(.) and ρ2(.) are two positive functions. α(.) and β(.) are two functions such that α(t) <

β(t) for all t ∈ [0, T ]. Dk (k ∈ N) denotes the diUerential operator ∂k

∂zk
(z is a generic one

spatial dimensional variable).
Benabidallah and Ferreira [1] investigated the global existence, uniqueness and asymptotic
behavior of regular solutions to problem (1). In [2], Bisognin proved the existence of local
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solution of (1) in a bounded or unbounded domain of Rn. The existence of global solutions to
problem (1) with analytic initial data was Vrstly investigated by Pokhozhaev [3] and Arosio
and Spagnolo [4].
The goal of this research work is to use the coordinate transformation to Vx the boundar-
ies and then propose the numerical algorithm based on generalized-α method in the Vxed
domain problem.
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Abstract

We consider statistical models constrained by ordinary di�erential equations (ODEs)

and present and analyze an adjoint state method (ASM) framework for an e�cient com-

putation of likelihood sensitivities with respect to the parameters of the underlying ODE

model.

In the statistical context, the discrete time series data have to be coupled with the

continuous ODE model. We interface the discrete and continuous worlds at the level of

the likelihood. We show rigorously that the resulting methodology is locally well-posed

under reasonable assumptions about the ODE model.

Further, we present a highly optimized implementation of the results and its bench-

marks on a number of problems.

Key words: Algorithm, Mathematical Statistics, Ordinary Di�erential Equations, Sensi-
tivity Analysis, Statistical Computing

1 Introduction

In [1] we employ the adjoint state method (ASM) for an e�cient computation of the �rst

and the second derivatives of likelihood functionals constrained by ODEs with respect to the

parameters of the underlying ODE model.

Essentially, the gradient can be computed with a cost (measured by model evaluations)

that is independent of the number of the parameters and the Hessian with a linear cost in

the number of the parameters instead of the quadratic one. The sensitivity analysis becomes

feasible even if the parametric space is high-dimensional.

We consider time series vector data yi ∈ Rn for i = 1, . . . ,N , where n is the dimension

of the observation space and N is the number of corresponding measurements times ti in

interval I := [0,T ] with some positive �nal time T > 0. Very often in science the underlying

structural model for such data is the following initial-value problem

dtu = f (t ,u,ϕ), t ∈ [0,T ],

u (0) = u0 (ϕ),
(1)
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where u0 is the initial condition, dependent only on the parameter vector ϕ ∈ Rp . In general

non-linear r.h.s. f of the governing equation represents the time derivative of the model

variableu (t ). It depends on the current time t , the model parametersϕ and the current values

of u ∈ Rm .
The predictor ŷ of the data y is a result of integration of the dynamical system (1) and

a possible subsequent post-processing, for example aggregation. This can be expressed in

mathematical terms as ŷ = P (u (t ,ϕ)) =: д(t ,ϕ),where P : Rm → Rn is the post-processing

operator relating the solution u to data.

We aim to e�ciently compute the �rst and the second derivatives of functionals of the

following form

l (ϕ) = ±
∑
i

d (yi ,д(ti ,ϕ)) (2)

with respect toϕ .Hered : Rn×Rn → [0,∞) is a su�ciently smooth distance function (metric)

on Rn . Equation (2) measures the �delity between the model and the data.

2 Connecting the worlds

Measurements yi are acquired at discrete time points ti . In statistics, these measurements

should not be tempered with in any way, e.g. they cannot be interpolated, which stands for

augmentation.

On the other hand the model (1) is a continuous one and since the ASM deals extensively

with the model and the functional (2), it is necessary to work in continuous setting.

In [1] we connect the discrete data and the continuous model on the level of the likelihood

functional. One can write∑
i

d (yi ,д(ti ,ϕ)) =

∫ T

0

δ{t − ti}d (y (t ),д(t ,ϕ)) dt (3)

where, by the classical misuse of notation, δ{t − ti} is the Dirac delta function of the set

of all measurement times ti . In order to achieve that the above integral is well-de�ned, we

will consider a small positive ϵ , such that the functions y (t ) := yi , t ∈ (ti − ϵ ,ti + ϵ ) for all

measurement times ti are well de�ned. We emphasize, that by doing so, we do not generate

new measurements. We merely assume an in�nitesimally small interval of their validity.
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Abstract

We present localization results for the eigenvalues of matrix polynomials, which are

encounterered in a wide range of engineering applications, and that are expressed in the

standard power basis as well as in generalized bases, some of which are generalizations

of little known or very recent (scalar) polynomial bounds. We illustrate these bounds

with examples from the engineering literature.

Key words: bound, matrix polynomial, polynomial eigenvalue
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1 Introduction

Matrix polynomials appear in generalized eigenvalue problems where a nonzero complex

vector v and a complex number z are sought such that P (z)v = 0, with

P (z) = Anz
n +An−1z

n−1 + · · · +A0 , (1)

and the coe�cients Aj are m ×m complex matrices. We will assume throughout that P is

regular, namely, that detP (z) is not identically zero. If An is singular then there are in�nite

eigenvalues and if A0 is singular then zero is an eigenvalue. There are nm eigenvalues, in-

cluding possibly in�nite ones. The �nite eigenvalues are the solutions of detP (z) = 0. The

familiar (linear) eigenvalue problem is obtained as a special case when n = 1 and An = I .
Bounds on polynomial eigenvalues are useful, e.g., for their computation by iterative

methods, when computing pseudospectra, or, especially, in the analysis of engineering prob-

lems. They are much more di�cult to compute than polynomials zeros, making bounds on

such eighenvalues more valuable. An extensive list of bounds can be found in [2], in which

the authors systematically generalize results for scalar polynomials to correponding results

for matrix polynomials. What we propose follows a similar pattern, although we consider ap-

parently relatively unknown results for scalar polynomials, re�ne and extend some of them,

and then generalize them to matrix polynomials. Contrary to almost all existing bounds, these

eigenvalue localization results can be further improved iteratively to achieve signi�cant im-

provements of existing bounds, like the ones in [2], sometimes by orders of magnitude.
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2 Eigenvalue localization results

We begin by reviewing a few results for scalar polynomials before generalizing them to matrix

polynomials, where our true interest lies. We cannot list all of the results we will present due

to page limitations, but the following should at least illustrate the general idea.

A classical result by Cauchy (1829) states that all the zeros of p (de�ned in the intro-

duction) lie in |z | ≤ r , where r is the unique positive solution of |an |x
n − |an−1 |x

n−1 − · · · −

|a1 |x − |a0 | = 0. We de�ne r as the "Cauchy radius" of p. A much less known improvement of

this result, obtained by using a polynomial multiplier, was published in [5] in 2002. Speci�c-

ally, it was shown there that the Cauchy radius of

(
anz

k − an−k
)
p (z) is not larger than that

of p, where k is the smallest positive integer such that an−k , 0. At the moment this is the

only known multiplier guaranteed to improve the Cauchy radius. Here we present a di�er-

ent multiplier and show that, in the simplest case when an−1an−2 , 0, the Cauchy radius of(
anz

2 − an−1z − (an−2 − a
2

n−1)
)
p (z) is also not larger than the Cauchy radius of p. Although

this Cauchy radius is not necessarily better than the one from [5], in practice, it almost al-

ways outperforms it. When an−1an−2 = 0, a simple modi�cation of the multiplier preserves

this result. In addition, the multipliers can be repeatedly applied to improve the bounds.

Cauchy’s result was generalized to matrix polynomials in [1], [2], and [3], where it was

shown that the eigenvalues of P in (1) (whenAn is nonsingular) are contained in the disk |z | ≤
r , where r is the unique positive solution of ‖A−1n ‖

−1xn − ‖An−1‖x
n−1−· · ·− ‖A1‖x − ‖A0‖ = 0

and ‖.‖ can be any matrix norm. As before, r is the Cauchy radius of P . In [4], it was shown

that this generalization can also be improved by using a multiplier, namely that the Cauchy

radii of (Anz
k − An−k )P (z) and P (z) (Anz

k − An−k ) are not larger than the Cauchy radius of

P . Likewise, we will show here that the Cauchy radii of

(
Anz

2 −An−1z − (An−2 −A
2

n−1)
)
P (z)

and P (z)
(
Anz

2 −An−1z − (An−2 −A
2

n−1)
)
) are also not larger than that of P .

This same pattern of scalar polynomial results that can be generalized to matrix poly-

nomials also extends to another classical result, namely, Pellet’s theorem, which sometimes

allows polynomial zeros to be separated from each other according to their moduli, and also

to results expressed in generalized bases. We present those results as well.

Several examples drawn from the engineering literature will be used to illustrate the

usefulness of the above results.
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Abstract

In the present paper we establish the theoretical framework of a new method in order

to approximate a de�nite integral of a given function by Bernstein quadrature formula.

Some numerical examples will be given for supporting of the theoretical aspects.

Key words: Bernstein operators, Bernstein quadrature formula, Integrals approximation.
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1 Introduction

In the real daily applications arise di�erent situations where it is necessary to solve certain

de�nite integrals, much more complicated than those presented in the courses of mathemat-

ical analysis. Thus, some integrals are so complex that they can not be solved analytically, or

solving them requires a great deal of computation and time. In order to solve such of integ-

rals in a e�cient way, numerous numerical methods have been developed, called quadrature

formulas. The most known method of numerical integration is obtained by integrating the

Lagrange interpolation formula resulting the class of Newton-Cotés quadrature formulas.

Knowing the fact that in the approximation process of certain de�nite integrals using the

Newton-Cotés quadrature formulas, we can not get a desired a priori error, we ask whether

there are simple quadrature formulas with this property. Some recent studies [1], [2], [3]

con�rm that the Bernstein operator

Bn(f ;x) =
n∑

k=0

(
n

k

)
xk (1 − x)n−k f

(
k

n

)
can be a way to solve this problem.
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Abstract

We discuss the e�cient experimental scenario for determination of transmission co-
e�cient and matrix heat conduction via solution of inverse problem. The in�ltrated
water in pours exchange heat energy with matrix. This exchange depends on the tem-
perature jump, saturation and transmission coe�cient. Because of microstructure, one
cannot measure temperature jump and therefore a special experimental scenario is sug-
gested, which enables to determine the transmission coe�cient and moreover the heat
conduction coe�cient of matrix. The sample used in experiments is 3D. This experimen-
tal scenario is based on suitable choice of initial and boundary conditions for water and
heat in the sample. The numerical experiments support e�ciency of this scenario for
reliable determination of required coe�cients.
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Abstract

The semi-smooth Newton method for solving discretized contact problems with Tresca
friction in three space dimensions is analyzed. The slanting function is approximated to
get symmetric inner linear systems. The primal-dual algorithm is transformed into the
dual one so that the conjugate gradient method can be used. The R-linear convergence
rate is proved for an inexact globally convergent variant of the method.

Key words: Contact problem, Tresca friction, Semi-smooth Newton method, Conjugate
gradient method, Gradient projection, Convergence rate
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1 Introduction

The dual algebraic formulation of discretized contact problems with Tresca friction in three
space dimensions (3D) belongs to the class of problems called QCQP (Quadratically Con-
strained Quadratic Program) with a speci�c structure: the minimized function is strictly con-
vex and quadratic subject to simple inequality bounds and separable quadratic constraints
(spherical for isotropic and elliptical for orthotropic Tresca friction). The active set optim-
ization algorithm for solving such problems has been proposed in [5, 6] as a generalization
of the algorithm for simple bounds [3]. In this context, the active set is an index subset of
components for which the constraints are satis�ed as equalities in the current iteration. The
CG (Conjugate Gradient) method generates iterations for non-active components and, when
the progress is not su�cient, the active set is changed by a gradient projection step. The al-
gorithm seeks the active set at the minimizer by generating iterations lying in the feasible set
and examines if the sequence of the function values is monotonously decreasing. In contrast
to 2D case, the algorithm in 3D does not exhibit any �nite termination property due to the
presence of the quadratic constraints but still it enjoys the same R-linear convergence rate.

Another way how to introduce active set strategies for solving contact problems is an act-
ive set implementation of the semi-smooth Newton (SSN) method. It is based on the primal-
dual formulation of contact problems which uses projections onto convex sets to formulate
the nonpenetration and friction conditions. The SSN method may be interpreted as a primal-
dual active set algorithm. This approach has been used in [8] for solving 3D frictional contact
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problems in which projections are replaced by appropriate nonlinear complementarity func-
tions. The convergence analysis uses typically the slant di�erentiability concept [1] leading
to the local superlinear convergence rate.

The projective formulation presented in this paper seems to be natural since it can be
directly derived from the weak formulation of contact problems [4]. The respective slant-
ing function is given by non-symmetric matrices and this property can not be eliminated by
simple linear algebra tools. Fortunately, the slanting function at the minimizer does not con-
tain some terms so that a symmetrization is possible. Neglecting these terms a-priori we get a
symmetric approximation of the slanting function. Then 3D contact problems can be treated
analogously as 2D ones [7]. First we propose a dual implementation of the SSN method with
inexact solving inner linear systems by few CG steps. Note that exact solving is unrealistic
for large-scale problems. Although numerical experiments indicate a high computational e�-
ciency, the superlinear convergence result does not hold. Therefore we propose a monotonous
globalization strategy guaranteeing the R-linear convergence rate of the algorithm. Although
this result is similar to 2D case, its proof di�ers in many points. The globally convergent vari-
ant of the SSN method is closely related to the above mentioned active set algorithms [6, 2].
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Abstract

We present new numerical library (TNL, Template Numerical Library) which is an
abstract layer for development of numerical solvers on modern parallel architectures.
Currently it supports multi-core CPUs and GPUs via CUDA. The library is written in
C++ and it uses C++ templates extensively. The template design of TNL allows to write
only one code and to run it on both CPU and also GPU without any knowledge of the GPU
design. The library has native support for several sparse matrix formats optimized for
GPUs together with iterative solvers for large linear systems and Runge-Kutta solvers. It
also has a native implementation of structured and unstructured numerical meshes. We
will brie�y explain the design of TNL, the interface for implementation on PDE solvers
and we will show scalability on multi-core CPUs together with speed-up on GPUs.
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Abstract

In order to improve the multi-�uid-channel scheme on the average of volume (MF-

CAV) and overcome its arti�cial intervention in the actual application, a new HLLCM

scheme has been designed on a moving mesh, which can reduce false distortion of mesh.

Numerical results show that the HLLCM scheme have better numerical e�ects in energy

conservation in the complex applications than the MFCAV scheme.

Key words: Arti�cial intervention, HLLCM scheme, Riemann solver, Godunov method,
Arbitrary Lagrangian-Eulerian method

MSC 2010: 76M12, 35L65, 65M06

1 Introduction

The multi-�uid-channel scheme on the average of volume (MFCAV)[1], an two-dimensional

Arbitrary Lagrangian and Eulerian (ALE) method, is widely applied in computational studies

for multi-material compressible �uid �ows. The main assumption of MFCAV method is that

the physical variables (density, energy, pressure and velocity) are cell-centered, hence named

Cell-Centered Grid Hydrodynamics(CGH).

However, MFCAV method easily su�ers from a numerical shock instability problem: the

discrete computational mesh might become very stretched and distorted, which always need

arti�cial intervention such as mesh adjustment, even �xed the Lagrangian mesh moving. Al-

thought arti�cial intervention can improve the robustness of MFCAV method, these eventu-

ally result in large numerical errors in real applications, such as energy conservation error.

In this work, a robust HLLC-type Riemann solver named HLLCM has been designed[2],

which is capable of preserving sharp contanct surface and avoid the numerical shock insta-

bility. The numerical experiments of real application demonstrate that HLLCM scheme have

better energy conservation than MFCAV scheme.
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2 Numerical schemes and experiments

When solving compressing Euler equations in ALE formulation, we need know the entire

structure and wave speeds of an approximate Riemann solver in order to determine where

the �ux lies in state space. The HLLC[3] approximate Riemann solver consistent of three

waves propagating at some speeds and four states, see Fig.1(a). Compared with the original

HLLC method, we construct a new HLLC-type Riemann solver: HLLCM, in which only the

contact wave S∗
HLLC is remained and the shear wave v∗L, v

∗
R is smeared by v∗, see Fig.1(b).

Figure 1: Wave structures of HLLC and HLLCM approximate Riemann solvers for the x-split

two dimensional equations. (a) HLLC, (b) HLLCM.

Numerical experiments of application demonstrate that the HLLCM have better mesh

quality than MFCAV. Moreover, the density calculated by HLLCM have been improved than

MFCAV, especially above the interface between two immiscible �uids. In fact, densities of

meshes above interface have always lead to the negative
∂p
∂ρ , which break the thermodynam-

ics law and make calculation terminate abnormally. So the MFCAV scheme have to introduce

several arti�cial intervention, such as mesh rezoning, interface adjustment, for robustness in

applications. Unfortunately, these intervention always increase the error of energy conser-

vation. The error of energy conservation calculated by HLLCM scheme is less than MFCAV

in applications.

3 Conclusion

The HLLCM scheme smears the shear velocities of the HLLC solver but remains almost all

other states in the HLLC solver. Numerical results of applications demonstrate that HLLCM

scheme have better numerical e�ects in keeping mesh quality and energy conservation than

MFCAV.
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Abstract

A two-dimensional model of shallow water �ow over erodible beds is presented. A

novel approach is adopted for the treatment of multiple sediment types, both in packed

beds and suspended sediment. An interface tracking tool is developed from one dimen-

sion and utilised on various di�erent bed types and structures to demonstrate its capab-

ilities. Two numerical solvers are developed and tested in this paper, the �rst consists

of the standard Roe solver that is �rst order accurate, but time consuming compared to

the other. Secondly a faster �nite volume of characteristics (FVC) solver is used. In this

method the Riemann problem is avoided using a two step approach. The two solvers are

contrasted and tested against several benchmark tests as well as novel situations designed

to explore the capabilities of the sediment handling tools implemented.

Key words: Finite volume method, Modi�ed method of characteristics, Shallow water
�ows, Sedimentary layers, Suspended sediment, Roe Solver.

1 Introduction

The ability to model sediment interaction with water �ows is crucial to planning and develop-

ment. Building on the model in[2], we develop sediment handling tools to handle multiple sed-

iments. In our model the coupled governing equations consist of the three two-dimensional

shallow water equations for �ow, a transport equation for suspended sediment, a bed Ex-

ner equation and empirical equations for sediment erosion and deposition. Two methods are

compared in this work, a 1st order Roe Solver and the Finite Volume Characteristic (FVC)

method used in [1]. The FVC method uses two steps; �rstly the �uxes are reconstructed us-

ing the method of characteristics and then in he corrector stage the conservation equations

are recovered. This method is conservative and well balanced.

2 Modelling of multiple sediments

In this study we consider non-cohesive sediment only. We utilise standard equations for

Erosion Eα and Deposition Dα for each sediment type (α = 1, 2, 3....m ) which are shown:

Dα = wα (1 −Cα )
1.2Cα , Eα = φα

θ − θα
h

ud−0.2α . (1)
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where wα is settling velocity, Cα is near bed concentration, φα is an erosion coe�cient, θ is

the near bed shear stress, θc is the critical shear stress for the initiation of motion, h is �uid

height, u �uid speed, and d is sediment diameter. We utilise a novel approach for handling

sediment in both suspended concentration and the bed. This consists of a three dimensional

discretised bed coupled with a two dimensional discretised �uid �ow. The height of the 3D

bed cells are crucial when working out what the required resolution of the model. As these

cells can either be over�lled, totally eroded, in �ux or undergo armouring.

3 Preliminary Results

(a) Circular dam bBreak at t = 0s (b) 3 layer dam break at t = 0s

(c) Circualr dam break at t = 1s (d) 3 layer dam break at t = 5s

Figure 1: A circular dam break with mixed sediments, and a 3 sediment layer dam break.

This new approach to multi-sediment handling allows us to consider both mixed sedi-

ment types as shown in the circular dam break as well as discrete bed layers, as shown in

Figure 1. This model enables the user to much more accurately assess real world sedimentary

problems, with mixed sediments or discrete sediment layers. For example in Equation 1, the

user no longer has to rely on an averaged value for d (like d50), instead they can use multiple

sediments mixed into the same three-dimensional bed cell that better represent the sediment

grading.
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Abstract

The isoparametric version of the �nite element method for meshes consisting of

curved triangles or tetrahedra is widely employed to solve PDEs posed in curved do-

mains. It allows to recover optimal approximation properties that hold for higher order

elements in the case of polytopic domains. However, besides a geometric complexity,

this technique requires the manipulation of rational functions and the use of numerical

integration. We consider a simple alternative to deal with Dirichlet boundary conditions

that bypasses these drawbacks, without eroding qualitative approximation properties.

Key words: curved domain, �nite elements, high order, N -simplex, polynomial algebra.

1 Introduction

This work deals with a �nite element technique for solving boundary value problems posed

in two- or three-dimensional domains, with a smooth curved boundary. Its conception is

close to the interpolated Dirichlet boundary condition method studied in [1]. The latter

technique is intuitive and is known since the seventies, but has been of limited use so far.

Among the reasons for this lies its di�cult implementation, the lack of an extension to three-

dimensional problems and restrictions on the choice of boundary nodal points to reach op-

timal convergence rates. In contrast our method is simple to implement in both two- and

three-dimensional geometries. Moreover optimality is attained in both cases for a wide choice

of boundary nodal points. The new method also bypasses the inconveniences of the isopara-

metric technique pointed out in the abstract. Moreover it is particularly handy, whenever a

�nite element method has normal component or normal derivative degrees of freedom, for in

this case the de�nition of isoparametric �nite element analogs is not always simple or clear.

Our method was �rst studied in [4], in connection with triangular Lagrange �nite elements of

arbitrary order. In this work we address the case of tetrahedral Lagrange elements for second

order elliptic PDEs, besides some Hermite elements.

2 Method’s short description with a numerical example

Referring to [4] for further details, here we endeavor to illustrate our new method, by solving

a simple model problem as follows. Let Ω be a smooth two-dimensional domain and Γ be its
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boundary. Given a function f ∈ H 1(Ω) we wish to �nd a function u ∈ H 3(Ω) that solves

−∆u = f in Ω with u = 0 on Γ.

Let P = {Th}h be a uniformly regular family of partitions of Ω into (straight) triangles re-

specting the usual intersection rules for �nite element meshes. For every partition Th ∈ P, h
represents the maximum diameter of all triangles therein. Further we denote by Ωh the union

of triangles inTh , and by Γh the boundary of Ωh . Now we denote byVh the �nite-element space

consisting of continuous functions that vanish on Γh , whose restriction to each triangleT ∈ Th
is a polynomial of degree less than or equal to two, and set ah(u,v) :=

∫
Ωh

grad u · grad v dx
and Lh(v) :=

∫
Ωh

fhv dx, where fh is an extension of f in H 1(Ωh) to Ωh \ Ω. If we search for

uh ∈ Vh such that ah(uh ,v) = Lh(v) ∀v ∈ Vh , (1)

it is well-known that the energy norm ‖ · ‖e,h of u − uh in Ωh , that is ‖ u − uh ‖e,h :=
[
∫
Ωh
|grad(u − uh)|2dx]1/2, will be only an O(h1.5).

In order to recover an optimalO(h2) for the energy norm of such an error function, we propose

the following. LetWh be a space de�ned exactly likeVh , except for the fact that everyw ∈Wh
necessarily vanishes only at the vertices of Γh and at points P of Γ arbitrarily located between

two neighboring vertices of Γh . To make implementation more straightforward, such points

can be chosen for instance as the (nearest) intersections with Γ of the perpendicular to an

edge of Γh passing through its mid-point. Now instead of solving (3) we search for

ũh ∈Wh such that ah(ũh ,v) = Lh(v) ∀v ∈ Vh , (2)

According to [4], ‖ ũh − u ‖e,h is an O(h2).
Let us illustrate this by solving problems (3) and (4) in case Ω is the unit disk centered at

the origin, and a uniformly regular family of meshes consisting of 8n2 triangles for n = 2
m

,

with m = 1, 2, . . . is constructed. In these experiments we take f (x ,y) = 9(x2 + y2)1/2, and

hence the exact solution is given by u(x ,y) = 1 − (x2 + y2)3/2. Owing to symmetry only the

quarter disk corresponding to x > 0 and y > 0 is taken into account in the computations, and

therefore only meshes containing 2n2 elements are employed.

Taking m = 2, 3, 4, 5 and 6 and observing that h = 1/n, we display in the table below the

quantities ‖ ũh − u ‖e,h and ‖ uh − u ‖e,h for the resulting decreasing values of h.

Observation of this table con�rms second order convergence in the energy norm for the

h −→ 1/4 1/8 1/16 1/32 1/64

‖ ũh − u ‖e,h −→ 0.1329 x 10
−1

0.3343 x 10
−2

0.8381 x 10
−3

0.2097 x 10
−3

0.5245 x 10
−4

‖ uh − u ‖e,h −→ 0.5434 x 10
−1

0.1969 x 10
−1

0.7042 x 10
−2

0.2503 x 10
−2

0.8870 x 10
−3

approach advocated in this paper, while the traditional approach yields only O(h1.5) approx-

imations in the same norm, as predicted in classical books.
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Abstract

In this study, the in�uence of the slipping and partly insulated, partly perfectly con-

ducting walls on the fully developed, pressure driven MHD pipe �ow is investigated

numerically by using the DRBEM. The �ow is subjected to a horizontally applied uni-

form magnetic �eld B0 = B0ex. The walls parallel to the magnetic �eld (side walls) are

perfectly conducting and the vertical walls (Hartmann walls) are partly insulated, partly

perfectly conducting that admit slip. It is shown that, the slip is e�ective as weakening

the boundary layers as Hartmann number increases.

Key words: DRBEM, MHD pipe �ow, slip velocity condition.

1 Mathematical Model

The coupled non-dimensional partial di�erential equations modeling the problem are [1]

∇2V + Ha
∂B

∂x
= −1

∇2B + Ha
∂V

∂x
= 0

−1 ≤ x ,y ≤ 1 (1)

with the boundary conditions

V = 0,
∂B

∂y
= 0 − 1 ≤ x ≤ 1, y = ±1

V ± α
∂V

∂x
= 0, B = 0 (insulated part),

∂B

∂x
= 0 (perfectly conducting part), x = ±1

(2)

where V (x ,y) and B(x ,y) are the velocity and the induced magnetic �eld in the pipe-axis

direction, respectively. Ha is the Hartmann number and α is the dimensionless slip length.

2 DRBEM Application

The MHD �ow problem (1)-(2) does not have an analytical solution due to its boundary condi-

tions. Thus, the solution is obtained by using the DRBEM (dual reciprocity boundary element

method) which is a numerical method providing both the solution and its normal derivative
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necessary on the slip boundary. The MHD equations in (1) are transformed to boundary in-

tegral equations using the fundamental solution of the Laplace equation (u∗ = (1/2π )ln(1/r ))
[2]. All the terms other than Laplacian, are taken as inhomogeneity and approximated by the

radial basis functions fj (r )’s. The DRBEM discretized coupled system of di�erential equations

are combined into a large system as

H̄

V

B

 = Ḡ


∂V

∂n

∂B

∂n

 + S̄

−1

0

 (3)

where

H̄ =

H 0

0 H

 + Ha

0 M

M 0

 , Ḡ =

G 0

0 G

 , S̄ =

S 0

0 0


S = (HÛ − GQ̂)F−1 and M = S

∂F
∂x

F−1. H̄, Ḡ, S̄ are 2(N + L) × 2(N + L) sized matrices and [2]

Hi j = ciδi j +

∫
Γj

q∗dΓj , Hii = ci ,

Gi j =

∫
Γj

u∗dΓj , Gii =
l

2π
(ln(

2

l
) + 1)

Fi j = fj (ri )

l is the length of the boundary element,q∗ = ∂u∗/∂n andN and L are the numbers of boundary

and interior nodes, respectively. ci = θ/2π where θ is the internal angle at point i . The

matrices Û, Q̂ are constructed by taking the particular solutions ûj ’s (∇2ûj = fj ) and their

normal derivatives as columns, respectively.

The system (3) is solved once without an iterative procedure which reduces the computational

cost and provides the solution in one stroke.

3 Numerical Results

The obtained solution is validated with the one in [3] which is the case of all the walls are

insulated. The numerical results show the signi�cant e�ect of slip on the Hartmann walls

when the slip ratio s = αHa is greater than one as diminishing the Hartmann layers. The slip

is more e�ective on the insulated portions of the vertical walls as Hartmann number increases.
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Abstract

This paper presents an experience in using a program complex Express-3D, based

on quasi gas dynamic equation system. The method of di�erence scheme construction

on non-orthogonal grids in 3D formulation basing on the �nite volume method is de-

scribed. The program complex showed a good e�ciency and scalability in solving a set

of problems including subsonic and supersonic �ows. Here we present some new results

of using this program complex for the problems of hypersonic �ow/boundary layer in-

teraction. The simulations results are discussed and compared with known experimental

data.

Key words: explicit scheme, hybrid computer clusters, hypersonic �ows, quasi gas dy-
namic equations, shock–boundary layer interaction.

Currently, there is a rapid progress in the growth of the computer performance. It is planned

that the Exa�ops performance will be overcome by 2024. It is expected that the increased

capabilities of computer systems will make a strong support in solving problems of funda-

mental science, technology development etc. Mathematical modeling of hypersonic �ows,

based on the multi-disciplinary models, requires the detailed spatial and time resolution for

the adequate description. This leads to the need of high-performance technology. A priori

estimations show that, in the near future it will be necessary to use several peta�ops perfor-

mance in one simulation run. Unfortunately, at present, despite of the existence of systems

with a performance of several peta�ops, the number of tasks that use 100 TFlops and more

simultaneously is small. This problem is fundamental and is related to the di�culties in algo-

rithms and software adaptation to the systems architecture with extra massively parallelism.

Note that the e�orts of scientists and experts in many countries are directed to the solution of

this problem. Modern HPC systems require software being created to take into account di�er-

ent types of processing units and a hybrid structure of memory. In this regard very promising

are the explicit schemes, which can be easily adapted to the computer systems with di�erent

architectures.

This paper presents an experience in using a program complex Express-3D, oriented on

heterogeneous GPU-based computer systems. Our program complex uses the explicit variant
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of kinetically consistent �nite di�erence schemes based on quasi gas dynamic (QGD) equa-

tion system [1], [2]. This system, proposed in Keldysh institute of applied mathematics RAS,

is essentially based on the fundamental relationship between kinetic and gas dynamic con-

tinuum descriptions. QGD equation system di�ers from Navier-Stokes equations in speci�c

additional dissipative terms. These terms serve as e�cient numerical stabilizers. Note that

the algorithm used here permits to simulate gas �ows in a wide diapason of Mach numbers

with minimum changes in program code. Our program complex was tested on a large number

of problems including subsonic and supersonic �ows. The e�ciency of parallel implementa-

tion on di�erent massively parallel computer systems was investigated. Good scalability is

achieved up to a very large number of computational nodes. For example, weak scalability

was more than 90% when 1024 GPUs were used in the calculations.

New version of program complex Express-3D uses multi block non orthogonal structured

hexahedral grids. This permits to solve problems with complex geometry. Transition to non-

orthogonal grids, in addition to complication of computing algorithms, demands storage of

large volumes of additional information and ensuring access to it. This leads to a loss of

e�ciency when the GPUs of previous generation are used, such as Tesla C20xx with small

number of registers on thread. However, upon transition to modern graphic processors with

architecture of Kepler it is possible to achieve the acceptable acceleration.

The program complex was used for the numerical simulation of the problems connected

with the hypersonic �ows, in particular boundary layer/shock wave interaction. These prob-

lems are:

• hypersonic �ow over edge compression corner under the di�erent angles of attack

(M∞ = 6.01,Re = 6 × 105);

• hypersonic �ow in the ramjet air intake (M∞ = 4.9,Re = 1.9 × 106).

The comparison of calculations results (�ow pictures, positions of the shock waves, sepa-

ration and reattachment points, wall pressure distributions) with the results of other authors

and the experimental data (see [3], [4]) was held and showed a good coincidence. The simu-

lation results will be presented at the Conference.
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Abstract

A new e�cient method named acceptance tail (AT) for generating univariate and

multivariate continuous random variables with unbounded range and in�nite-valued dis-

crete random variables is introduced. Di�erent versions of the AT method are presented.

Validity of the AT method is proved. Theorems that enable one to estimate the e�ciency

of the method are formulated and the proof of the theorems given.

Key words: Random number generator, sampling method, multivariate distribution.

1 Introduction and Description of the AT Method

Acceptance tail (AT) method is a universal sampling method designed for generating ran-

dom variables (rv’s) of di�erent types: univariate and multivariate, continuous and discrete,

that satisfy certain weak conditions, which makes it applicable for vast majority of widely

used distributions. Three versions of the AT method have been developed: continuous uni-

modal univariate (UNAT), multivariate continuous (MAT) and discrete (DAT). Implementa-

tion of these versions enables one to design random number generators (RNGs) for sampling

from many speci�c distributions which are much more e�cient than the RNGs which have

been developed to date. Note that for Gaussian, exponential and some other distributions the

performance of currently used generators can’t be improved signi�cantly in terms of speed.

These generators implement the ziggurat method designed for rv’s with monotonously de-

creasing and unimodal symmetric probability density functions (see [2]), grid method for

multivariate rv’s with bounded range and alias table method for �nite-valued discrete rv’s

(see [1]). Unfortunately, these algorithms do not extend to other types of rv’s. However, we

have proved that algorithms implementing the AT method which extend to non-symmetric

unimodal, in�nite-valued discrete and multivariate continuous rv’s with unbounded range

are as fast as the algorithms implementing ziggurat, grid and alias table methods. These three

fastest methods developed to date are based on the same idea: covering the density region (re-

gion below the graph of the probability density function) by a set of equi-length (equi-area,

equi-volume) coverage units (CUs), such that generating a random point within any of them

is very simple, selecting one of CUs utilizing a uniform integer RNG and generating a point in

the selected CU. The AT method is based on the similar idea which is covering the bounded
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main part ("head") of the density region H by a set of m CUs with common length (area, vol-

ume) 1/n, m less than or equal to n, and selecting randomly an integer in the range 1:n. If the

selected integer i which is the index of one of the CUs is less than or equal to m, a random

point P=(P1;P2) is generated within the chosen CU. If the generated point P belongs to H, P1

is âĂĲacceptedâĂİ as a generated value of the "target" rv X; otherwise, a point is generated

randomly in the unbounded "tailâĂİ" T of the density region. If the covering set satis�es the

requirement of the AT method (m/n is very close to one), with very high probability only one

generation of a point within the chosen CU will be required for a generated value of X which

makes the AT method extremely fast.

2 Concluding Remarks

1) The theorems on the existence of a required set of CUs in the case where the distribution

satis�es certain conditions and the theorems enabling one to estimate the e�ciency of the

presented versions of the AT method are proved.

2) RNGâĂŹs implementing the presented versions of the AT method for some speci�c dis-

tributions have been developed and tested in experimental sampling.

3) Due to the advantages of the AT method which is fast, universal and simple, we predict that

in the nearest future generators implementing the method will be incorporated as standard

generators for many rv’s in some of the most widely used platforms.
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Abstract

With high order methods increasingly becoming prominent, it has become neces-

sary to employ adaptation strategies to reduce cost while maintaining accuracy. The �ux

reconstruction (FR) method is an arbitrary high order method for solving PDE’s on un-

structured meshes. In the present work we study various p-adaptation strategies in the

FR method to solve the compressible Navier Stokes (CNS) equation in 2D and present the

advantages and disadvantages of each.

Key words: �ux reconstruction, compressible �ow, p-adaptation, error indicator

1 Introduction

Over the past few years, research in unstructured high order methods for computational �uid

dynamics has been gaining prominence. The discontinuous Galerkin (DG) and more recently,

the �ux reconstruction (FR) methods [1] can handle both unstructured meshes and arbitrary

high order. Flows governed by the compressible Navier Stokes (CNS) equation, especially wall

bounded �ows, are in general characterized by high gradients. Low order methods generally

dissipate away gradients including vortices that need to be advected for accurate �ow physics.

Therefore we need high order methods.

On the other hand, increasing order exponentially increases the degrees of freedom for

the problem. Therefore a price has to be paid in terms of cost of computation. Adaptation

methods such as h-adaptation, where the mesh is re�ned, and p-adaptation, where the order

of the polynomial in the cell is increased, are therefore necessary to manage the trade-o�

between cost and accuracy. They allow us to control where in the domain we want to lower

dissipation and thus increase accuracy. In the present work we study various strategies to-

wards p adaptation to improve the cost of computations while preserving the high order of

computations.

2 Numerical method

The compressible Navier Stokes (CNS) equation can be written in 2D as,

∂u
∂t
+
∂fi
∂x
+
∂gi
∂y
−
∂fv
∂x
−
∂gv
∂y
= 0 (1)
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where u,fi ,fv are the conserved variable, the Euler �ux and viscous �ux vector respectively.

In the �ux reconstruction method, the domain is divided into mesh elements. Inside each

element we have solution points for the solution vector and �ux points at the boundary for

calculating correction functions. In 1D, the solution and �ux are represented as a polynomial

inside each cell.

uh =
K∑
i=1

(uh )ili (x )

f h =
K∑
i=1

( f h )ili (x )

(2)

where K is the order of the polynomial, h signi�es that this is a discretized representation

and li are the Lagrange polynomials. To account for the interaction between cells, a common

solution is calculated at the �ux points and the correction polynomial is constructed.

f C = ( f IL − f DL )дL + ( f IR − f DR )дR (3)

Here f I , f D ,дL,дR are the interaction �ux and discontinuous �ux at the �ux points and the

correction polynomials. Interaction �uxes can be calculated by Riemann solvers for the in-

viscid term and DG schemes for the viscous term. This procedure is extended into multiple

dimensions by performing a tensor product of the polynomials.

p-adaptation requires that di�erent cells have di�erent polynomial orders which means

having di�erent number of solution and �ux points in each cell. In the present work, p-

adaptation is implemented by calculating common values on the �ux points of the cell having

higher order and constructing the correction polynomial using these values. More impor-

tant is the issue of error indicators. There are various ways of estimating errors such as

feature-based, residual-based and adjoint based indicators [2]. Each of these error indicators

come with their own trade-o�s. In the present work, we present an algorithm for a dynamic

p-adaptation based FR and compare results obtained from the various error indicators for

di�erent test cases in 2D.
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Abstract

We study a direct and an inverse source problem for a moving rigid body, which has
a perfect contact with the neighbourhood.

Let Ω be a bounded �xed domain of Rn , where n ≥ 1, with Lipschitz boundary Γ.
Suppose a moving rigid subdomain Ω1(t) of Ω for all t ∈ [0,T ], which is traveling with a
given velocity v(x , t). We assume that⋃

t ∈[0,T ]

Ω1(t) ⊂ Ω,

which means that the traveling part Ω1(t) allways stays at a safe distance from the bound-
ary Γ. The rest of the domain Ω is denoted by Ω2(t) := Ω \ Ω1(t).

We study the following direct problem

∂tu(x , t) − ∇ · (K(x)∇u(x , t)) = f (x) in Ω1(t) × (0,T ]
−∇ · (K(x)∇u(x , t)) = f (x) in Ω2(t) × (0,T ]

u(x , t) = 0 in Γ × (0,T ]
u(x , 0) = u0(x) in Ω.

(1)

We assume the ideal contact on ∂Ω1(t), which can be described by the following trans-
mission conditions

[u(x , t)]∂Ω1(t ) = 0, [K(x)∇u(x , t) · ν ]∂Ω1(t ) = 0, (2)

where [w]∂Ω1(t ) denotes the jump of w across ∂Ω1(t). These conditions represent con-
tinuity of the potential (temperature, etc.) and the �ux across the interface ∂Ω1(t).

The inverse source problem we consider is to reconstruct the source f (x) in (1) from
the additional �nal time measurement u(x ,T ).
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Abstract

Matslise [1] is a graphical Matlab software package for the interactive numerical
study of Sturm-Liouville problems (SLPs), which can generally be written as

(p (x )y ′(x ))′ + q(x )y (x ) = Ew (x )y (x ) x ∈ (a,b)

The package allows the fast and accurate computation of the eigenvalues E and the
visualization of the corresponding eigenfunctions y. It is built upon high-order piece-
wise constant perturbation methods, also called the CP methods. Many researchers, in
particular the ones from applied �elds, prefer to use the user friendly problem solving
environment Matslise over Fortran subroutines, like SLEDGE and SLEIGN2, although
these latter packages can deal with a larger range of singular problems.

Recently, we developed the successor code Matslise 2.0 [2]. This new release is de-
veloped to work for a broad class of singular problems. This is realized by including the
recent extension of the CP algorithm from problems in Liouville normal form to the gen-
eral Sturm-Liouville form and by using specially adapted algorithms in a narrow interval
around the singularity.

In the present talk, I will focuss on some important ideas that have lead to the success
of the Matslise package, such as shooting, coe�cient approximation, perturbative cor-
rections, the Liouville transformation, the Prf̈er transformation, . . . and some new ideas
that are included in the new release.
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Abstract

In this paper the management of an urban road network is formulated as an optimal

control problem associated to a system of partial di�erential equations. The problem is

analyzed from a mathematical viewpoint, and a complete numerical algorithm to solve

it is proposed. Finally, some numerical results for a realistic situation in the Guadalajara

Metropolitan Area (Mexico) are presented.

Key words: Air pollution, Optimal control, Partial di�erential equations, Tra�c �ow
MSC 2010: 49M25, 35Q93

1 Numerical simulation: the state system

We consider an urban domain Ω ⊂ R2 where we want to simulate pollution levels due to

vehicular tra�c in the time interval [0,T ]. We take, for example, carbon monoxide (CO) as

air pollution indicator, and we propose to obtain the CO concentration Φ(x , t) by solving the

following system of partial di�erential equations (see [1]):

∂ρi
∂t
+
∂ fi (ρi )

∂s
= 0 in (ai ,bi ) × (0,T ), (1a)

ρi (., 0) = ρ0i in [ai ,bi ], (1b)

ρs (as , .) = ρins in (0,T ), (1c)

ρt (bt , .) = ρoutt in (0,T ), (1d)

β jkl fνj (nj+l )(ρνj (nj+l )(aνj (nj+l ), .)) = α j
lk fνj (k )(ρνj (k )(bνj (k ), .)) in (0,T ), (1e)

∂ϕ

∂t
+ v · ∇ϕ − ∇ · (µ∇ϕ) + κϕ =

NR∑
i=1

ξAi in Ω × (0,T ), (1f)

ϕ(., 0) = ϕ0
in Ω, (1g)

µ
∂ϕ

∂n
− ϕ v · n = 0 on S−, (1h)

µ
∂ϕ

∂n
= 0 on S+, (1i)

ACOMEN 2017

287



where ρi (x , t) is the density of cars in the roadAi ⊂ Ω represented by the 1D segment (ai ,bi ),
fi is a suitable known function giving the �ux on that avenue, ρ0i is the initial density, ρins and

ρoutt are, respectively, boundary conditions for incoming and outgoing avenues, parameters

α j
lk ∈ [0, 1] represent the preferences of drivers arriving to the junction j (α j

lk gives the per-

centage of drivers that arriving at junction j from the avenue Ak are going to take the avenue

Al ), parameters β jkl ∈ [0, 1] represent the ingoing capacity in outgoing avenues (β jkl gives the

percentage of vehicles that coming at junction j from Ak can enter the outgoing avenue Al ),

v(x , t) is the horizontal wind velocity, µ is the CO molecular di�usion coe�cient, κ is a CO

extinction rate, ϕ0
is the initial CO concentration, and n denotes the unit outward normal

vector to the boundary ∂Ω = S− ∪ S+, where S− = {(x , t) ∈ ∂Ω × (0,T ) such that v · n < 0}

represents the in�ow boundary, and S+ = {(x , t) ∈ ∂Ω × (0,T ) such that v · n ≥ 0} represents

the out�ow boundary. Finally, NR is the number of unidirectional roads in the network and

ξAi represents the source of pollution due to vehicular tra�c on the avenue Ai . From a math-

ematical viewpoint, ξAi is a Radon measure given, from a 2D parametrization of Ai , in terms

of the car density ρi (see [1] for further details).

2 Optimalmanagement of a network: the optimal control prob-
lem

The model (1) is very useful in order to study what consequences will have, in terms of at-

mospheric pollution, any action taken on vehicular tra�c. This model is also very useful

for designing operations on the road network, which are good (optimal), not only in terms

of tra�c �ow, but also in terms of pollution levels. From a mathematical point of view, the

search of these optimal operations (the optimal management of a network) consists of solv-

ing an optimal control problem where model (1) is the state system. This problem can be

formulated as:

min

u∈Uad
J(ρu,ϕu), (2)

where u (control variable) represents the parameters of the road network what can be man-

aged, Uad collects all the admissible operations, and J includes tra�c and environmental ob-

jectives. J is a given function (possibly a vector function) of (ρu,ϕu) solution of the state

system (1) for the network de�ned by the control u.
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Abstract

In this work we developed a 1/t algorithm [1, 2] for numerical integration in high
dimensions. A large amount of computation time is wasted when a random walker is
unable to reach a rare state at the sharp peak of an integrand, and becomes trapped after
falling through that state. In this study, the density of states was divided into only two
levels by sampling an arbitrary point in the range of the integrand, rather than into many
levels using a Vxed bin width (grid discretization on continuous space). The technique is
quite straightforward and easy to implement. It avoids the need to determine the exact
boundaries of the integrand, which is often a non-trivial task. Simulations show that our
method [3] is able to signiVcantly reduce the number of Monte Carlo trials required, and
therefore the simulation time. The potential of the proposed method was demonstated
by application to two multidimensional integrals: the Gaussian ring, adapted from the
toy problem [4], and the setting sun Feynman diagram [5]. The results conVrm that
the proposed method can be applied to the calculation of multidimensional integrals
without error saturation, yielding accurate values in applications where other numerical
methods fail.

Key words: Gaussian integrals, Monte Carlo integration, Wang-Landau algorithm
MSC 2010: 65C05, 65D30
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Abstract

Aimed to the parallel computation of the three-temperature(3T) di�usion equations,

we design two parallel iteration algorithms by using local and global interface predic-

tion method. The numerical results show that the two algorithms obtain second order

accuracy, unconditional stability and good scalability. Besides, the algorithm with global

prediction is more e�cient than the one with local prediction when calculating the 3T

problems with strong nonlinearity.

Keywords: Domain decomposition, Parallel iteration algorithm, Three-temperature equa-
tions.

1 Introduction

Three-temperature(3T) di�usion equations are commonly encountered in engineering, such

as the inertial con�nement fusion. When solving the 3T equations numerically, the parallel

technique is always necessary because of the huge cost. In [1], the author construct a parallel

iteration algorithm with the local interface prediction to solve nonlinear single-temperature

di�usion equations on structured quadrilateral meshes. The algorithm is unconditionally sta-

ble, conservative, and obtains linear speed-up.

In this paper, we will design some new parallel algorithms for 3T problems by following

the idea of [1]. At �rst, we extend the algorithm in [1] to 3T equations on the unstructured

meshes. Then, we design a new parallel algorithm by using the global prediction and ex-

trapolation estimation for the nonlinear coe�cients. At last, we perform some numerical

experiments to test the two algorithms.

2 The parallel iteration schemes

For 3T equations, we use the implicit nine point scheme and the Picard iteration. Take the

electronic equation for example, the scheme is

ρn+1K (cve )
s
K
ue,s+1K − ue,nK

τ
SK +

∑
σj ∈εK

F e,s+1K,σj
|σj | = f e,s+1K SK , (1)
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where

F e,s+1K,σj
= −κsσj



ue,s+1L − ue,s+1K

dL,σj + dK,σj
− Dσj

*
,

ue,sα j+1 − u
e,s
α j

|σj |
+
-


. (2)

The computational domain is divided into many subdomains. In order to solve the above dis-

crete equations in parallel, the prediction value ũe,s+1L is needed if cell L is located in neigh-

boring subdomain. When s > 0, we take ũe,s+1L = ue,sL ; When s = 0, we use the following two

methods to predict the value ũe,1L .

(1) ũe,1L = ũ
e,n
L ., Alдorithm1.

(2) All the unknowns at the �rst iteration step are predicted by Jacobi scheme. The nonlinear

coe�cients, such as Cve (u), are calculated by using the extrapolated value 2un − un−1, i.e.,

˜Cve (u
n+1) = Cve (2u

n − un−1). Alдorithm2.

3 Numerical results

We calculate a nonlinear 3T model[2] by the two parallel algorithms. There are two materials

SiO2 and CH in this model, and a strong source is put on the outer boundary.

Tab.1 show the parallel e�ciencies and the average nonlinear iteration numbers it ] . We

can see that both algorithms have good parallel scalability, but the algorithm 2 has a better

performance than algorithm 1.

Table 1: The parallel e�ciencies and the average numbers of the nonlinear iterations

CPU 4 8 16 32

Algorithm 1

time(s) 2824.6 1422.9 700.6 336.9

e�ciency 1 99.2% 100.7% 104.8%

it ] 38.1 38.5 38.1 36.1

Algorithm 2

time(s) 1962.7 976.2 482.3 227.7

e�ciency 1 100.5% 101.7% 107.7%

it ] 26.7 26.7 26.5 24.9
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Abstract

We consider the thermodynamic consistent microscale model from [4] for modeling

the Lithium and charge transport during the discharge of a Li-ion battery. By assuming

a constant temperature we neglect thermal dependencies. The work [3] gives references

to experimental evidences, which shows that the intercalation process of Li-ions in the

active particles of the cathode (e. g. LiCoO2) should be described in a more complex man-

ner than with the Fickian di�usion law. In papers like [6] one uses for the intercalation

a two-phase di�usion model, which reduces mathematically to a Stefan-problem in the

active particles.

The elliptic-parabolic system of partial di�erential equations with a strong nonlinear

(exponential) coupling at the electrode-electrolyte-interface, which describes the trans-

port in the microscale model, can be extended by a two-phase di�usion model for the act-

ive particles. For the numerical approximation one can reformulate the extended equa-

tions in an enthalpy-formulation. A Finite-Element approach for solving these transport

equations was developed in [2]. For the time discretization there was used a theta-Euler-

scheme and additionally a semi-implicit scheme proposed in [5]. Hereby the full system

was decomposed in an elliptic and a parabolic subproblem and solved successively.

The main point of the algorithm is to compensate the missing regularity of the en-

thalpy function by a regularization to still solve the nonlinear system with Newton’s

method.

Due to the reformulation with the enthalpy one has the advantage that the change

of the di�usion model is simulated without any additional information. Furthermore

through the enthalpy-formulation the resulting algorithm is fully independent of the

geometry and the space dimension.

The numerical scheme for solving that problem was implemented with the open

source Finite-Element library deal.II [1] and validated for some one and two dimensional

problems with a one-phase di�usion model.

Key words: Li-ion battery, modeling, numerical simulation

References

[1] W. Bangerth, R. Hartmann, G. Kanschat, deal.II—A General Purpose Object Oriented
Finite Element Library, ACM Transactions on Mathematical Software (TOMS) 33(4)

(2007) 24/1–24/27.

ACOMEN 2017

295



[2] F. Castelli, Die Numerische Simulation eines Mikroskalenmodells für Li-Ionen-Batterien,

Master thesis, Karlsruher Institut für Technologie (KIT), Karlsruhe, 2016.

[3] M. Kespe, Numerische Untersuchungen zur Interkalation bei Lithium-Ionen Batterien, Dip-

lomarbeit, Karlsruher Institut für Technologie (KIT), Karlsruhe, 2012.

[4] A. Latz, J. Zausch, Thermodynamic consistent transport theory of Li-ion batteries, Journal

of Power Sources 196(6) (2011) 3296–3302.

[5] M. Maier, The Mathematical Analysis of a Micro Scale Model for Lithium-Ion Batteries,
PhD thesis, Karlsruher Institut für Technologie (KIT), Karlsruhe, 2016.

[6] Q. Zhang, R. E. White, Moving Boundary Model for the Discharge of a LiCoO2 Electrode,
Journal of the Electrochemical Society 154(6) (2007) A587–A596.

ACOMEN 2017

296



Book of abstracts of the 7th International Conference
on Advanced Computational Methods
in Engineering, ACOMEN 2017
18–22 September 2017.

Autocatalytic Reaction as a Building Block for Describing the
Typical Dependencies of Chemical Kinetics

Zoë Gromotka1, Denis Constales1 and Gregory Yablonsky2

1 Department of Mathematical Analysis, Ghent University
2 Parks College of Engineering, Aviation and Technology, Saint Louis University

e-mails: zoe.gromotka@ugent.be, denis.constales@ugent.be, gyablons@slu.edu

Abstract

Mathematically the chemical kinetics of a reversible reaction is shown to be equiva-

lent to the chemical kinetics of several autocatalytic reactions, happening in parallel. This

is speci�cally interesting for �rst order reversible reactions, as one can now incorporate

the properties of �rst order kinetics with the ideas of collision theory. As such these au-

tocatalytic reactions can be viewed as a simple alternative to the Lindemann mechanism.

As for higher order reversible reactions, the approach of multiple autocatalytic reactions

simpli�es mathematical descriptions of the chemical kinetics to a product of two poly-

nomials with at least one polynomial being linear. To conclude, by using autocatalytic

reactions as building blocks for chemical kinetics there can be a better mathematical as

well as physical understanding of reversible chemical reactions and by extension irre-

versible reactions.

Key words: autocatalytic reaction, chemical kinetics, reversible reaction
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Abstract

In this paper reduced order model of a non-linear model is developed by proper ortho-
gonal decomposition method. The reduced model is compared with the reference model
when applied to an eddy current problem. A classical magnetodynamic finite element
formulation is used as reference and as starting point of the reduced models.

Key words: Eddy currents, Non-linear, Proper orthogonal decomposition, Reduced
order modelling

1 Introduction

The accurate modelling of electromagnetic devices taking eddy current effects, movement,
non-linearities,... into account are a major concern from the early design stage. The finite ele-
ment method is widely used and versatile for modelling these phenomena. However, it maybe
extremely cumbersome and expensive in terms of computational time and memory in case of
3D geometries, high working frequency, non-linearities (possibly hysteresis), a long transient
behaviour. Reduced Order (RO) techniques are a feasible and efficient alternative, which are
gaining interest in electromagnetic field problem to approximate the full system accurately in
a reduced manner. RO techniques implementation on the linear and non-parametric dynamic
systems have already been reached at a mature level [1]. However, a few works have addressed
the RO modelling of non-linear problem taking into account the eddy currents. The major
challenge of RO modelling of a non-linear problem lies on the large computational time re-
quirement due to the regular update of the non-linear term in the iterative loop and full system
matrix multiplication at each parametric values. The model order reduction of a non-linear
magnetostatic problem is proposed in [2], where the discrete empirical interpolation (DEI)
method is used combined with the proper orthogonal decomposition (POD) method to inter-
polate the non-linear terms of the full system in order to speed up the computational process. In
this paper, we propose POD based RO technique to accurately model a non-linear eddy current
problem. To achieve furthermore computational efficiency, we aim at implementing the DEI
method along with the POD.
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2 Model order reduction and Results

As a test case we consider the single-phase power transformer. Let us consider a bounded
domain Ω = Ωc ∪ ΩC

c ∈ R
3 with boundary Γ. The conducting and non-conducting parts of

Ω are denoted by Ωc and ΩC
c , respectively. The (modified) magnetic-vector-potential (a−)

magneto-dynamic formulation (weak form of Ampère’s law) reads: find a, such that

(σ∂ta,a
′)Ωc + (ν curla, curla′)Ω + 〈n̂ × h,a′〉Γ = (js ,a

′)Ωs , ∀a
′ (1)

with a′ test functions in a suitable function space; b = curla the magnetic flux density; js a
prescribed current density and n̂ the outward unit normal vector on Γ. The derivative with re-
spect to time is denoted by ∂t . The ferromagnetic non-linear isotropic material with reluctivity
ν (magnetic field h = νb) and conductivity σ is considered. The discretization of the weak
form of (1) leads to the following matrix system:

A∂tx (t ) + B[x (t )]x (t ) = C (t ) . (2)

The POD method reduces the order of the system (2) from x ∈ RN×1 to xr ∈ R
M×1 (M � N )

by means of a projector operator Ψ. The POD generates Ψ with a snapshot technique [3]. In
Fig. 1, the joule loss of the transformer core and relative error results for ROM with two basis
M = 29 and M = 39 are shown. We observe that only M = 29 number of basis can approximate
the full system (4816 number of unknowns) very accurately. Details on the test model, the RO
theory and the more efficient RO modelling will be provided in the full paper.

a prescribed current density; n̂ is the outward unit normal
vector on �; (·, ·)⌦ and h·, ·i⌦ denote a volume integral in
⌦ and a surface integral on � of the scalar product of their
arguments. For the sake of simplicity, the media is assumed
linear and isotropic, with magnetic constitutive law h = ⌫b
(magnetic field h, reluctivity ⌫) and electric constitutive law
e = �j = ��@ta (electric field e, induced current density j,
conductivity �).

8 cm 3 cm

22
 c

m

8 
cm 9 

cm

24 cm

1c
m

Fig. 1. Single phase transformer: geometry and mesh

The FE discretization of (1) with N edge basis functions for
a and a0 (Galerkin approach), leads to the following system
of first-order differenctial equations:

A@tx(t) + Bx(t) = b(t) , (2)

where x(t) is the time-dependent column vector of N un-
knowns, A, B are N ⇥N matrices of coefficients and b(t) is
the source column vector (right hand side).

Furthermore, the system (II) is discretized in time by means
of the so-called ✓�scheme, which amounts to implicit or
backward Euler with ✓ = 1, the scheme we adopt. A system of
algebraic equations is obtained for each time-step from tk�1

to tk = tk�1+�t. Taking this into account, system discretized
in time reads:

[A�t + B] xk = A�txk�1 + bk (3)

with A�t = A
�t , xk = x(tk) the solution at instant tk, xk�1 =

x(tk�1) the solution at instant tk�1, bk the right hand side at
tk and �t the time step.

Adopting a sinusoidal source of frequency f (pulsation ! =
2⇡f ), we can apply the complex formalism (complex in bold)
and rewrite (??) frequency domain as

[ı!A + B] x = b , (4)

where the dependence of x and b with the frequency (f , !)
is omitted.

III. MODEL ORDER REDUCTION

Model order reduction techniques aim at reducing the
matrix system in the time domain (3) or in the frequency
domain (4) [8]. The solution vector x (N ⇥ 1) is then

approximated by a vector xr (M ⇥ 1) in a reduced basis,
M ⌧ N ,

x ⇡  xr , x ⇡  xr , (5)

with  an orthonormal projection operator; respectively x,xr

and  in the frequency domain. Therefore, the reduced-order
systems of (3) and (4) become, respectively,

[Ar
�t + Br] xr

k = Ar
�tx

r
k�1 + br

k , (6)
[ı!Ar + Br] xr = br , (7)

with Ar
�t =  T A�t , Br =  T B and br =  T b in (6)

and analogously, Ar =  T A , br =  T b in (7).
In this paper the projection operators  ,  are constructed

either using either the POD or the AKS method.

A. Proper Orthogonal Decomposition (POD)

In the POD method, the  ( ) operator is constructed
based on snapshots techniques [11], i.e. generated from the
time-domain full solution x (x). Note that quantities between
parenthesis correspond to the frequency domain case.

Let us consider the snapshot matrix S = [x1, x2, ·] (S =
[x1, x2, ·]) from the set of solution x (x) for the selected
number of time steps (frequencies).

Applying the singular value decomposition (SVD) to this
snapshot matrix S as,

S = U⌃VT , (8)

where  is obtained by taking  = U .

B. Arnoldi-based Krylov Subspace (AKS) method

The AKS approach can only be applied in the frequency do-
main. The construction of  is based on the Krylov subspace
Kn(↵, �) = span{�, ↵1�, ↵2�, ·↵n�1�}. and on the transfer
function of (4). After applying the Laplace transformation, it
reads

H(s) = (As + B)�1b , (9)

that is further approximated with a Padé expansion around the
expansion point, sexp [12].

It reads

H(s) =
X

j

Hj(s� sexp)
j (10)

with Hj = (�(Asexp + B)�1A)j(Asexp + B)�1b with
↵ = �(Asexp + B)�1A, � = (Asexp + B)�1b and j =
0, 1, ..., n � 1. The set of the vectors Hj constructs Krylov
subspaces as H0 = ↵, H1 = ↵1� and so on. The Arnoldi’s
algorithm is used for generating projection basis  from the
Krylov subspace [13]. Hence,  is built from the orthogonal
basis of Kn(↵, �). Notice that, in this work we consider first
two moments for each expansion point in Arnoldi. Explain
why????
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Figure 1: (a) geometry of a single phase transformer, (b) Joule loss (up) and relative error
(down) between full and RO models
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Abstract

The Swift–Hohenberg (SH) equation has been widely used as a model for the study

of pattern formation. The SH equation is a fourth-order nonlinear partial di�erential

equation and cannot generally be solved analytically. Therefore, computer simulations

play an essential role in understanding of nonequilibrium processing. The aim of this

research is to present accurate and e�cient approaches for solving the SH equation. The

methods are based on the operator splitting method and are to split the SH equation into

linear and nonlinear subequations. The linear and nonlinear subequations have closed-

form solutions in the Fourier and physical spaces, respectively. The methods are simple

to implement and computationally cheap to achieve high-order time accuracy. Numer-

ical experiments are presented demonstrating the accuracy and e�ciency of proposed

methods.

Key words: First- and second-order convergence, Fourier spectral method, Operator split-
ting method, Swift–Hohenberg equation
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Abstract

This abstract presents a framework for accelerated solution of discrete time optimal

control problems considering the presence of a computationally expensive black-box sys-

tem simulator. The conventional solution methodology is concisely reviewed and an

adapative surrogate model re�nement trust region framework is conceptualized. A trust

region update rule is proposed, based on assessing the capability of the local surrogate

models to correctly predict descent of the local Lagrangian cost contribution of the highly

constrained optimization problem.

Key words: black-box simulators, direct multiple shooting, optimal control, surrogate
models, trust region framework

1 Introduction

We consider problems of the form (1), which de�nes a generic discrete time optimal con-

trol problem. The optimization variable s consists of N + 1 discrete time state values, s =
(s t

0
· · · s t

N )
t
, and q of N corresponding control parametrizations, q = (qt

0
· · ·qt

N−1)
t
. The func-

tions c+ : Rnx × Rnu → R and x+ : Rnx × Rnu → Rnx correspond the cost contribution and

�nal state value associated to each piecewise trajectory respectively, function c : Rnx → R
accounts for a �nal cost contribution associated to the end state. In this context, we assume

that the functions c+ and x+ are jointly evaluated by addressing a function p+ : Rnx ×Rnu →
Rnx+1,p+(si ,qi ) = (x

+(si ,qi )
t c+(si ,qi ))

t
, which evaluation coincides with calling a (computa-

tionally expensive) black-box simulator. Hence, it is further assumed that we do not dispose

over (direct) gradient information, ∂p+/∂si nor ∂p+/∂qi .

min

s,q

N−1∑
i=0

c+ (si ,qi ) + c (sN ) , subject to

{
x0 − s0 = 0

si+1 − x
+ (si ,qi ) = 0, ∀i ∈ {0, . . . ,N − 1} (1)

Under these circumstances, conventional solution would result in excessive evaluation of

the simulator p+ and corresponding time consumption. We propose to facilitate acceleration

of the overall solution speed by ruling out direct communication between the solver and the

system simulator, p+. That by introducing N data-based surrogate models which adaptive

re�nement is managed by a trust region surrogate model management framework [1].
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2 Sequential Quadratic Programming in Optimal Control

Generally, such problems are solved by performing a Sequential Quadratic Programming

(SQP) minimization of the Lagrangian cost function,Φ(v) : Rns+nq+ns → R, withv = (s t qt λt)t

and λt
the Lagrangian multipliers [2]. The SQP method then generates a series {v j }nj=0 which

converges to a solution v∗ of the �rst-order Karush-Kuhn-Tucker conditions: ∂Φ/∂v = 0.

Φ
(
v j

)
= f

(
s j ,q j

)
+ λj, t · д

(
s j ,q j

)
=

N−1∑
i=0

Φi
(
v j

)
+ c

(
s jN

)
+ λj, t

0
·

(
x j
0
− s j

0

)
(2)

Here, we de�ned the local Lagrangian cost contribution, Φi (v
j ), which is completely de-

pendent on a single call of p+(w j
i ) at the local joint optimization variable w j, t

i = (s
j, t
i q j, ti )

t
:

Φi
(
v j

)
= c+

(
s ji ,q

j
i

)
+ λj, ti+1 ·

(
s ji+1 − x

+
(
s ji ,q

j
i

))
(3)

3 A Concept Trust Region Framework

We propose to replace the global and computationally expensive black-box simulator p+ dur-

ing the SQP iterations by N local iterate dependent data-based surrogate models p̃+, ji . We as-

sume these local models to generate quality predictions within the corresponding Euclidean

balls B(w j
i ;∆

j
i ) = {wt ∈ R

nx+nu
: ‖wt −w

j
i ‖ ≤ ∆j

i }. The SQP series is propagated using these

local models (for which direct gradient information is readily available) until the iterates lie no

longer within the balls B(w j
i ;∆

j
i ), from where the local models and corresponding trust radii

should be updated. The prediction quality after k successful iterations is assessed by accur-

acy metric r ji , which is understood as the capability of model p̃+, ji (corresponding approximate

Lagrangian contribution, Φ̃i ) to correctly predict descent of the actual contribution, Φi .

r ji =
Φi

(
s ji ,q

j
i , s

j
i+1, λ

j
i+1

)
− Φi

(
s j+ki ,q

j+k
i , s

j+k
i+1 , λ

j+k
i+1

)
Φi

(
s ji ,q

j
i , s

j
i+1, λ

j
i+1

)
− Φ̃i

(
s j+ki ,q

j+k
i , s

j+k
i+1 , λ

j+k
i+1

) (4)

The trust region radii, ∆j
i , are updated according to a conventional update rule [3] and

new local models p̃+, j+ki are built within the neighbourhoods B(w j+1
i ;∆j+k

i ). This procedure

is then repeated until convergence of the governing SQP series is achieved.
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Abstract

In this paper we present a new family of e�cient iterative methods, in order to ap-

proximate the simple roots of various nonlinear equations. By some numerical examples

we test the accuracy of our methods making a comparative study with other well known

iterative methods.

Key words: Iterative methods, Nonlinear equation, Order of convergence.
MSC 2010: 49M15.

1 Introduction

One of the most important problem in all the history of mathematics was to solve the nonlin-

ear equation f (x) = 0. We can not always �nd an exact solution to this equation, but we can

obtain some approximative solutions using iterative methods. Newton’s method is the best

known iterative method for solving nonlinear equations, given by

xn+1 = xn −
f (xn)

f ′ (xn)
, n = 0, 1, 2, · · · (1)

which converges quadratically. In order to improve the order of convergence many research-

ers introduced and studied some modi�cations of Newton’s iterative method, based especially

on the expense of additional evaluations of the functions, derivatives and changes in the point

of iterations. A modi�cation in this sense was done by Homeier [1], which studied the fol-

lowing iterative method

xn+1 = xn −
f (xn)

f ′
(
xn −

f (xn )
2f ′(xn )

) , (2)

with cubic convergence. This method is suitable if the computation of the derivative has a

similar or lower cost than that of the function itself. Although Newton iterative method is

the most used in solving nonlinear equations, there exists a disadvantage concerning the ap-

plication, because it depends upon derivatives which are sometimes restricted in engineering.

This disadvantage which appears in application of Newton iterative method was eliminated
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by Ste�ensen [2]. He replaced the derivative f ′(xn) form the relation (1) by forward-di�erence

approximation

f ′(xn) ≈
f (xn + f (xn)) − f (xn)

f (xn)
(3)

and got the famous Ste�ensen’s iterative method

xn+1 = xn −
f 2 (xn)

f (xn + f (xn)) − f (xn)
, (4)

free from any derivative of the function. Ste�ensen iterative method (4) is also quadratically

and require two functional evaluations per iteration, but in contrast with Newton method (1)

is free from any derivative of the function. Following the idea of Ste�ensen, in many research

articles have been developed and studied new derivative-free iterative methods, with the aim

to improve the order of convergence.

The main focus of our paper is to present a new family of iterative methods depending

on a real parameter, constructed as a linear combination of Ste�ensen, respectively Homeier

method. These methods require two functional evaluations per iteration. We will prove that

each family member converges quadratically. In the last part, by some numerical examples

we put in evidence the performance of our methods, making a comparative study with other

methods of the same order.
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Abstract

We introduce a sigmoidal type non-linear functionwm (r ;x ) on a given interval [a,b]
with a threshold at x = r ∈ (a,b). Using the proposed function wm , we develop a
weighted averaging method to improve Fourier partial sum approximation for a function
having a jump-discontinuity. The method is based on the decomposition of the target
function into the left-hand and the right-hand part extensions. The resultant approximate
function is composed of the Fourier partial sums of each part extension. The uniform
convergence of the presented method is proved and the e�ciency of the method is shown
by some numerical example.
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Chaillat Stéphanie France stephanie.chaillat@ensta-paristech.fr
Chaudhry Qasim Ali Pakistan chqasim@uet.edu.pk
Chovan Jaroslav Belgium jaroslav.chovan@ugent.be
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