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Welcome from Marián Slodička, Conference Chair

Dear participant,

First of all I wish to welcome you to the city of Ghent. We will have over one hundred talks during
this week with participants from 29 countries!

This is already the sixth edition of the international conference on “Advanced COmputational
Methods in ENgineering”. Like the previous editions the conference themes are concentrated on
mathematical modeling, simulation and numerical methods for solving scienti�c problems from
various engineering disciplines. I would like to thank all of its participants because they turn
every ACOMEN into an interesting, learning-full and pleasant event.

Another important factor of the success of ACOMEN are the highstanding invited main
lectures given by world-wide recognized experts in their respective research �elds: Gregoire
Allaire (Ecole Polytechnique), Larisa Beilina (Chalmers University of Technology and Göteborgs
universitet), Kai-Uwe Bletzinger (Technische Universität München), Oscar P. Bruno (California
Institute of Technology), Axel Klawonn (Universität zu Köln), Youssef Marzouk (Massachusetts
Institute of Technology), Andrew Stuart (The University of Warwick) and Enrique Zuazua (Basque
Center for Applied Mathematics).

I also thank the session chairs and organizers of the mini symposia for their engagement;
Marnix Van Daele, Florin Adrian Radu, Markus Bause, Andriy Sokolov, Jürgen Fuhrmann, Herbert
De Gersem, Jens Förstner, Denis Constales, Sebastian Schöps, Erik Dick, Jan Vierendeels, Ste-
fan Kurz, Stéphane Lanteri, Gert Van den Eynde, Hendrik Rogier, Tim Boonen and Stéphane Clenet.

Special thanks goes to the organizational team of this years edition, all technical sta� working
behind the scenes, and in particular Rob De Staelen, conference secretary.

Should you have any questions or speci�c needs during our meeting, we are more than glad to
help you at the conference reception desk.

I hope you will enjoy your stay!

Kind regards,
Marián Slodička
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10:20 Mini symposium 2.i: Simulation of multiphase �ow and reactive transport in porous media
§ Room Bourdon (chair: Florian Adrian Radu) 7
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Radu, Florin Adrian˚; Kumar, Kundan; Nordbotten, Jan; Pop, Sorin
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Klawonn, Axel˚; Lanser, Martin; Radtke, Patrick; Rheinbach, Oliver
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27 15:00 Time of �ight estimation of sparse ultrasonic re�ections using reiterative deconvolution technique
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14:00 Mini symposium 2.ii: Simulation of multiphase �ow and reactive transport in porous media
§ RoomWolfers (chair: Florian Adrian Radu) 29
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Grimmonprez, Marijke˚; Slodička, Marián

53 17:00 Modelling of reactive nonisothermal mixture �ow and its simulation in COMSOL Multiphysics
Orava, Vít˚; Souček,Ondřej
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Allaire, Grégoire˚; Dapogny, Charles; Michailidis, Georgios

10:20 Mini symposium 4: Numerical modeling and simulation of electrochemical devices
§ RoomWolfers (chair: Jürgen Fuhrmann) 59
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on Advanced Computational Methods
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Numerics for large-time horizon control
of scalar conservation laws

Navid Allahverdi1, Alejandro Pozo1 and Enrique Zuazua∗2

1 BCAM - Basque Center for Applied Mathematics,
2 Ikerbasque & BCAM - Basque Center for Applied Mathematics,

e-mails: nallahverdi@bcamath.org, pozo@bcamath.org, zuazua@bcamath.org

Abstract

In this lecture we will highlight the importance of employing proper discretization
schemes when dealing with optimal control problems in long time horizons.

We focus on scalar conservation laws for which there is a clear dichotomy in what
concerns their large time behavior. In the presence of viscosity, solutions behave like
self-similar viscous nonlinear waves, while in the inviscid case they develop a N-wave
like hyperbolic dynamics.

First, we discuss the various possible numerical solvers, and show that some of them
fail to preserve the hyperbolic dynamics, due to the too large numerical di�usion intro-
duced by the scheme. This allows classifying the schemes into two categories: those that
preserve the large time dynamics and those that do not.

We then address an optimal control problem in a long time horizon, motivated by
the problem of sonic-boom control of supersonic aircrafts ([2]). We show that when the
problem is solved employing a numerical scheme that does not preserve the asymptotic
dynamics, this often leads to a wrong minimizer, polluted by high frequency purely nu-
merical spurious oscillations.

Our analytical results will be complemented with numerical simulations that con�rm
fully the predicted pathologies.

This presentation is based on earlier works in collaboration with C. Castro (Madrid),
L. Ignat (Bucharest) and F. Palacios (Stanford).

Key words: Burgers equation, inverse problem, optimal control, optimization, large time.

1 Summary of the talk

Given a time T > 0 and a target function u∗ we would like to minimize the following func-
tional:

J (u0) =
1
2

∫

R

(u (x ,T ) − u∗ (x ))2 dx , (1)

where u is the solution of the viscous Burgers equation


∂tu + ∂x

(
u2

2

)
= ν∂xxu, x ∈ R, t > 0,

u (x ,0) = u0 (x ), x ∈ R. (2)
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The control problem set in (1)-(2) can be viewed as a classical inverse problem, in the
sense that for a given target function u∗, one can solve the equation backwards from datum
u∗ at timeT to obtain the initial condition u0. But, of course, this may lead to a very unstable
process due to the intrinsic ill-posedness of the problem under consideration.

The goal of this lecture is to discuss to which extent the numerical results developed to
approximate the minimizers may lead to di�erent results, depending on the numerical scheme
one uses to approximate the nonlinear PDE under consideration. As we shall see, and it is
expectable, some schemes approximate better the original dynamics in long time than others.
But this di�erence can be dramatically enhanced when addressing the optimization problem
above, a fact that could lead to catastrophic results.

At the analytical level it is well known that the solutions to the inviscid Burgers equation
(ν = 0) may develop shocks and that, if u0 ∈ L1 (R), they converge to the so-called N-wave
(c.f. [9]). This behavior di�ers signi�cantly for the viscous version (2), which is of parabolic
nature (see [6]). Nevertheless, when ν is su�ciently small and t is large (but not enough for
the viscosity to be dominant), the behavior of the solutions is close to the hyperbolic case [8].

This phenomena needs to be handled carefully at the numerical level, when solving (2)
with usual monotone conservative schemes ([5]). Indeed, in [7], the numerical parabolic-
hyperbolic dichotomy is observed in the inviscid case. More precisely, it was shown that some
numerical schemes when, in principle, designed to approximate the hyperbolic dynamics,
may lead to viscous pro�les in long time horizons.

In this talk, following [1], we will explain this issue and illustrate its possible consequences
when addressing the optimization problem above. We shall mainly discuss the Engquist-
Osher (EO) scheme, which is well behaved in what concerns the long time dynamics, and
the modi�ed Lax-Friedrichs (LFM) one which adds too much numerical viscosity destroying
eventually the N-waves to generate viscous pro�les. In Figure 1 we describe this fact.

To numerically approximate the minimizers of (1) we consider a simple quadrature rule:

J∆ (u0∆) =
∆x

2
∑

Z

(uNj − u∗j )2, (3)

ukj being the numerical solution achieved by means of a monotone scheme.
Let us choose T = 50 and the following target function:

u∗ (x ) =



3
2000

(
− e−(5

√
20+x )2 + e−(2

√
20+x )2

+
√
π x

(
erf (5

√
20 − x ) + erf (2

√
20 + x )

))
, |x − 5| ≤ 25,

0, elsewhere.

(4)

Let us consider a space interval [−30,50], which is large enough to avoid boundary e�ects.
Regarding the time-step, we take it according to the CFL condition for LFM [5], that is

∆t

∆x
max
j
|u0j | + ν

∆t

∆x2
≤ 1

2 (5)

Note that EO has a less restrictive CFL condition [3], but we take (5) as well in order to have
the same ∆t for both schemes.

We now apply a gradient descent method (GDM) from the function u0 = 0 and perform
300 iterations of the GDM. For each of the numerical �uxes, we repeat the experiment using
a mesh-size ∆x = 0.1,0.2,0.4,0.8.
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Figure 1: Plot of solutions of (2) from [1] with ν = 10−6 at t = 1, t = 100 and t = 5000, with
∆x = 0.2 and numerical �uxes EO (dotted) and LFM (solid).

As we observe in Figure 2, using EO we are able to compute a quite satisfactory minimizer
even for ∆x = 0.8, which returns an optimal value below 10−6. As ∆x becomes smaller, the
obtained result is even better (solid lines in Figure 4). This shows the robustness of the method,
since the optimal solution is similar in the four cases.

Figure 2: [1]: Optimal solutions (dark) for (1)-(2) with ν = 10−4, obtained after 300 iterations
of GDM+EO, and their corresponding state at time T = 50 (light) compared to the target
(dotted). From left to right and top to bottom, ∆x = 0.8, 0.4, 0.2 and 0.1 respectively.

Nevertheless, as we expected, the GDM did not perform so well when coupled with LFM.
In fact, in Figure 3 we observe that a large enough mesh-size introduces spurious oscillations
in the solution. Let us recall that LFM introduces numerical viscosity which is proportional
to ∆x2. Therefore, the dynamics of the numerical solution �nds it complicated to preserve
the negative part and, hence, it requires those oscillations in order to maintain the N-wave
shape after large periods of time. Moreover, Figure 4 shows that the results obtained this way
were always worse than the ones obtained using EO. Note that, despite the oscillations, the
optimal solution approaches the one obtained using EO as ∆x gets smaller. Thus, the method
seems to be robust once the mesh-size is small enough.

The same experiments have been performed using the IPOPT optimization platform ([4],
[10]) exhibiting a similar behavior but also an enhanced sensitivity with respect to the initial-
ization chosen.
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Figure 3: [1]: Optimal solutions (dark) for (1)-(2) with ν = 10−4, obtained after 300 iterations
of GDM+LFM, and their corresponding state at time T = 50 (light) compared to the target
(dotted). From left to right and top to bottom, ∆x = 0.8, 0.4, 0.2 and 0.1 respectively.

Figure 4: [1]: Descent of the functional J after 300 iterations of the GDM coupled with EO
(light) and LFM (dark), using ∆x = 0.8, ∆x = 0.4, ∆x = 0.2 and ∆x = 0.1 respectively, for the
case ν = 10−4 and T = 50.

2 Conclusions and perspectives

The main conclusions that will be highlighted in this lecture are as follows:

• The optimization results obtained depend signi�cantly on the discretization methods
(EO or LFM) and, more precisely, on the way each discretization scheme alters the
dynamics of the Burgers equation.

• The performance of LFM is not satisfactory. The initial data obtained are quite oscillat-
ory in the vicinity of sharp slopes for large cell sizes. The spurious oscillations are due to
the numerical viscosity inherent in the LFM method and they do not have any physical
signi�cance in relation with the dynamics of the true continuous Burgers equation.

• The numerical viscosity present in LFM is proportional to the square of the cell size
(∆x )2. The numerical viscosity is adjusted by the size of cells and hence the solution to
the optimization problem depends on the mesh-size.

• The performance of EO is satisfactory. The obtained initial data is less sensitive to the
choice of the cell size ∆x and domain discretization. Furthermore, not only EO results

page 4 of 223 ISBN: 978-9-08223-090-1 ACOMEN©2014
[paper 1]



are less sensitive to the domain discretization, but also they are less sensitive to the
initialization of the variables.

• The discretization scheme can alter the underlying continuous dynamics of the equa-
tion. For example, the oscillatory optimal initial datum obtained with LFM is not a best
�t for the functional if the initial datum is evolved in time with EO scheme in forward
mode, showing the unsuitability at the continuous level.

• The possibility of presence of multiple local minima in the functional landscape is ex-
cluded.
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Abstract

In this work we present a mass conservative numerical scheme for two-phase �ow
in porous media. The �ow model consists of two fully coupled, nonlinear equations: a
degenerate parabolic equation and an elliptic equation. The proposed numerical scheme
is based on backward Euler for the temporal discretization and the mixed �nite element
method (MFEM) for the discretization in space. For each time step, the corresponding
nonlinear system is solved by a robust linearization scheme, which does not involve any
regularization step. The convergence of the linearization scheme is proved rigorously.

Key words: linearization, two-phase porous media �ow, mixed �nite element method,
convergence analysis, linearization

1 Introduction

Two-phase �ow in porous media is encountered is many real-life situations, such as water
and soil pollution, oil recovery or nuclear waste management. These situations are of strong
interest for the society and therefore a proper understanding of the two-phase �ow in porous
media is of high relevance. A crucial point in this sense is played by numerical simulations,
based on accurate mathematical models and on appropriate numerical schemes.

2 Mathematical model and numerical scheme

In this work we concentrate on numerical schemes for two-phase �ow through porous media.
The �uids are assumed immiscible and incompressible and the solid matrix is assumed non-
deformable. The formulation adopted here uses the global pressure and a complementary
pressure (obtained by using the Kirchho� transformation) as primary unknowns (see [2]).
The system to be solved includes two coupled nonlinear partial di�erential equations, one
degenerate elliptic - parabolic and one elliptic. for the the existence and uniqueness of a
solution is we refer to [2].
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Here we propose a mass conservative scheme based on MFEM and Euler implicit for
solving numerically the system modeling the two-phase �ow. For dealing with degenerate
parabolic equations, whose solutions have typically low regularity, we use the lowest order
Raviart-Thomas elements [1]. The nonlinear equations arising on each time step are solved by
a robust linearization scheme. We emphasize that the new scheme does not involve any regu-
larization step. The linearization scheme is a combination between a classical Picard method
and the scheme presented in [3], and builds on the Lipschitz continuity of the saturation
function with respect to the complimentary pressure. We show that the scheme is linearly
convergent if the time step is small enough. Only a relative mild condition on the time step
is required. Exactly this robustness is the main advantage of the scheme when compared to
the quadratically, but locally convergent Newton method (see e.g. [4] for the convergence
of the Newton method for the MFEM discretization of degenerate parabolic equations). One
can use the proposed linearization scheme to increase the robustness of the Newton method
by performing a few iterations at the begining of any Newton step. Moreover, the proposed
scheme has a generic character and therefore can be applied also in connection with other
discretization methods, like conformal �nite elements or �nite volumes.
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Abstract

Geochemistry has a substantial impact in exploiting geothermal systems. In a geo-
thermal reservoir, the injected water and the in-situ brine have di�erent temperatures
and chemical compositions and �ow through highly heterogeneous regions. Due to
the varying chemical properties of the rocks, the temperature and the �ow regimes can
change signi�cantly.

As a consequence of �ow and geochemical reactions, composition of reservoir �uids
as well as reservoir rock properties will develop dynamically with time. Minerals dissolv-
ing and precipitating onto the reservoir matrix, can change the porosity and hence the
permeability of the system substantially. Mineral solubility can change by the cooling of
the rock, or by the di�erent ion content in the in-situ brine and in the injected water. The
interaction between altering temperature, solute transport with mineral dissolution and
precipitation, and �uid �ow is highly coupled and challenging to model appropriately as
the relevant physical processes jointly a�ect each other. The e�ect of changing porosity
through the production period of the geothermal reservoir, may have severe impact on
operating conditions, as pores may close and block �ow paths, or new pores may open
to create enhanced �ow conditions.

When dealing with porosity changes, what happens at the pore scale is highly relev-
ant. The pore size a�ects the reaction rates for the dissolution and precipitation process
as the reactive surface area is changed, and the resulting permeability is a�ected by the
pore geometry. To achieve expressions for both reaction rates and permeability that de-
pend on the pore scale e�ects we start with a model at the pore scale, and derive the
Darcy scale model by homogenization.

We propose an approach that models the three relevant processes; �uid �ow, heat
transport and reactive transport, on a relevant time scale. The considered mathematical
and corresponding overall numerical solution strategy enables to investigate the coupling
between �ow, geochemical and thermal e�ects, as well as to develop tailored numerical
approaches.

Key words: �nite volume method, geothermal energy, homogenization, mineral precip-
itation/dissolution, porosity changes
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Abstract

In this contribution a family of variational space-time discretizations for transport
problems in porous media is presented. The schemes are based on mixed �nite element
methods for the approximation of the spatial variables. Their convergence properties are
studied by numerical experiments. Moreover, the schemes are applied to challenging and
complex problems of practical interest in heterogeneous and anisotropic porous media.

Key words: Flow and transport, heterogeneous and anisotropic porous media, mixed
�nite element method, variational time discretization

MSC 2010: 65M60, 80M10, 76M10

1 Introduction

Numerical simulations of time dependent �ow and transport processes in heterogeneous por-
ous media are desirable in several �elds of natural sciences and in a large number of branches
of technology. The accurate numerical approximation of such �ow and transport phenomena
continues to be a challenging task. The applicability and value of the mixed �nite element
method (MFEM) and its hybrid variant (MHFEM) have been demonstrated for a wide range of
problems. While the discretization in space involves a signi�cant set of complexities, temporal
approximations for transient transport in porous media has received relatively little interest
and has most often been limited to traditional non-adaptive low order methods.

The Galerkin method is a known approach to solve time dependent problems [1, 2]. So
far, this variational approach has rarely been used in practice despite of its signi�cant ad-
vantages like a uniform approach for numerical analyses, the natural construction of higher
order methods, the applicability of a posteriori error estimation techniques (for instance, the
dual weighted residual approach) and of well-known adaptive �nite element techniques. One
reason for this might be the high algorithmic complexity of the resulting algebraic systems.

In this contribution we present and analyze variational space-time approximations of a
prototype convection-di�usion model problem. For the discretization in space mixed �nite
element methods of Raviart-Thomas type are used. The temporal variable is discretized by at
least A-stable continuous Galerkin methods. Stability and error analyses of the schemes as
well as implementational issues are addressed. Finally, their stability and accuracy properties
and their potential for simulating complex transport phenomena are illustrated by numerical
examples of practical interest; cf. Fig. 1.
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Figure 1: Layered anisotropic medium and computed concentration pro�le and �ux mag-
nitude (l.t.r.) for di�usive transport.

2 Numerical approach

For a nonstationary di�usion problem written in mixed form, we consider and study the
following continuous variant of our variational time discretization schemes:

Find uτ ∈ Xr (W ) and qτ ∈ Xr (V) such that u (0) = u0 and
∫ T

0
〈∂tuτ + ∇ · qτ ,wτ 〉 dt =

∫ T

0
〈f ,wτ 〉 dt ,

∫ T

0

{

〈D−1qτ ,vτ 〉 − 〈uτ ,∇ · vτ 〉
}

dt = 0

for allwτ ∈ Yr−1 (W ), vτ ∈ Yr−1 (V).
Here, 〈·, ·〉 = 〈·, ·〉L2 (Ω) and Xr (X ) :=

{

u ∈ C (Ī ; X ) ��� u |In ∈ Πr (In ; X ) , ∀n
}

, Yr (X ) :=
{

w ∈ L2 (I ; X ) ��� w |In ∈ Πr (In ; X ) , ∀n
}

with Πr (J ; X ) :=
{

u (t ) =
∑r

j=0 ξ
j
n t

j , ξ jn ∈ X , ∀j
}

denote spaces of piecewiese polynomial functions in time.
The discontinuity of test functions wτ ∈ Yr−1 (W ) and vτ ∈ Yr−1 (V), respectively, then

allows us by an appropriate choice of test basis functions to recast the variational problem as
a time marching scheme. Further, we apply the Gaussian quadrature rule to the integration
in time and solve the resulting variational problem in a �nite dimensional LBB-stable pair
of mixed �nite element spaces Wh ⊂ W and Vh ⊂ V. For instance, in the case r = 2 this
yields a block matrix system of the following structure that has to be solved for the unknown
coe�cient vectors in each of the time intervals In = (tn−1,tn], n = 1, . . . ,N :

*......,

A 0 −B 0
0 A 0 −B

τn
2 B
> 0 α̂1,1G α̂1,2G

0 τn
2 B
> α̂2,1G α̂2,2G

+//////-

*.....,

Q1
h

Q2
h

U1
h

U2
h

+/////-
=

*.....,

0
0
F̃1

F̃2

+/////-
.
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Abstract

In this talk, I will present our most recent results based on two �nite element formula-
tions: (i) the surface �nite element and (ii) generalized projected �nite element methods
applied to solving partial di�erential equations of reaction-di�usion type on arbitrary
stationary and evolving surfaces. Reaction-di�usion equations on evolving surfaces are
formulated using the material transport formula, surface gradients and di�usive con-
servation laws. The evolution of the surface is de�ned by a material surface velocity.
The generalized projected �nite element method di�ers from the surface �nite element
method in that it provides a conforming �nite element discretization which is "logically"
rectangular. However, this property restricts the general applicability of the numerical
method to arbitrarily evolving surfaces, a key advantage for the evolving surface �nite
element method. To demonstrate the capability, �exibility, versatility and generality of
the numerical methodologies proposed, I will present various numerical results. This
methodology provides a framework for solving partial di�erential systems on continu-
ously evolving domains and surfaces with numerous applications in developmental bio-
logy, cancer research, wound healing, tissue regeneration, and cell motility among many
others , where reaction-di�usion systems are routinely applied.
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Abstract

This paper describes the modelling of blood �ow from a control system perspective,
with an aim to automatically regulate the blood �ow for medical applications. The mod-
elling starts from the control forms, i.e. the end application, followed by substitution of
the physical model of the blood �ow into the control forms.

Key words: blood �ow, control system, medical applications

1 Introduction

Blood is a biological substance in human body that contains a lot of information (Hackl et
al., 2012). It has been widely used as a testing substance for health screening by the middle
of 20th century (Morabia and Zhang, 2004), in static environment such as in health screen-
ing as well as in dynamic environment such as in an operation. Blood is also a biological
substance in human body that transports most of vital substances, including nutrition, oxy-
gen, and hormones. Likewise, the introduction of vital substances has been done in static
environment such as through oral intake as well as in dynamic environment such as through
injection. Understanding the blood stream with an aim to control is absolutely essential. In
this paper, I present an analysis and development of blood stream model, starting from the
control requirements and directed towards �uid mechanic analysis. In doing so, I introduce a
�ipped approach, where the starting point is at the downstream application and the end point
is at the upstream theoretical analysis.

2 Modelling

For a control application, a system can be described in a transfer function form as follows:

G (s ) =
b0s

m + b1s
m−1 + b2sm−2 + · · · + bm

a0sn + a1sn−1 + a2sn−2 + · · · + an (1)

or in a state space form as follows:

ẋ = Ax + Bu
y = Cx + Du

(2)
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where the transfer function can be obtained from the state space as follows:

G (s ) = C(sI − A)−1B + D (3)

and where G (s ) represents the system, s the frequency-domain of the time-domain state x , A
the system matrix, B the input matrix, C the output matrix, D the feedthrough matrix and u
the input.

Blood, being a relatively highly viscous �uid, is modelled as follows:

v = V

(
1 −

( r
R

)2)
(4)

−p + µ ∂v
∂l
= 0 (5)

where v is the velocity state of blood, V the maximum velocity, r the radial increment of the
blood vessel, R the radius of the blood vessel, p the blood pressure, µ the viscosity modulus of
the blood, and l the lateral increment of the blood vessel.

The objective of this paper is to express equation (4)-(5) into equation (1) or (2) such that
it can be used to design a control law. Such transformation is done by takingv = x , i.e. taking
the velocity as the state of the blood system.
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Abstract

Numerical simulation of PDEs on surfaces has become very important in the last
years. A very wide range of corresponding biological applications exists, e.g., embryonic
development, cancer tumor growth, dynamic of elastic lipid membranes, vasculogen-
esis and angiogenesis, protein-protein interaction, tissue development and immune re-
sponses. Processes in the scope are often described with continuum reaction-di�usion-
convection models on deforming-in-time surfaces. The numerical simulation of such
models is very challenging; and, modern numerical techniques are of predominant im-
portance. In this talk, we discuss the construction of the FE level-set based technique
for the reaction-di�usion-convection equations on evolving-in-time surfaces. High or-
der FCT/TVD stabilization methods are used for the numerical treatment of arising con-
vective/advective terms. Corresponding numerical tests for chemotaxis systems and for
systems with the instability of the Turing type will be presented.

Key words: PDEs on evolving surfaces, level set, �nite elements, �ux corrected transport
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Abstract

The solution of nonlinear problems, e.g., in material science requires fast and highly
scalable parallel solvers. FETI-DP (Finite Element Tearing and Interconnecting) domain
decomposition (DD) methods are parallel solution methods for implicit problems dis-
cretized by �nite elements. A common iterative DD approach for nonlinear problems is
a Newton-Krylov-DD strategy where the nonlinear problem is linearized using a Newton
method. Then, the linear system associated with the tangent sti�ness matrix is solved
with a preconditioned Krylov space method. The preconditioner is obtained by a do-
main decomposition method. In an e�cient and parallel scalable domain decomposition
method, local subdomain problems and a su�ciently small global problem have to be
solved. The local problems are inherently parallel, the global problem is needed to ob-
tain numerical and parallel scalability. FETI-DP domain decomposition methods have
been shown to be parallel scalable for linearized elasticity problems on up to 65 536 cores
of a BlueGene/P supercomputer (JUGENE, Jülich Supercomputing Center, Germany) in
2009. Recently, nonlinear versions of the well-known FETI-DP methods for linear prob-
lems have been introduced. Here, the nonlinear problem is decomposed directly before
linearization. In these methods, in each iteration, local nonlinear problems are solved on
the subdomains. The new approaches have the potential to reduce communication and
to show a signi�cantly improved performance, especially for problems with localized
nonlinearities, compared to a standard Newton-Krylov-FETI-DP approach. Moreover,
the coarse space of the nonlinear FETI-DP methods can be used to accelerate the New-
ton convergence. Another new approach can be viewed as a strategy to further localize
computational work and to extend the parallel scalability of FETI-DP methods towards
extreme-scale supercomputers. Here, a recent nonlinear FETI-DP method is combined
with an approach that allows an inexact solution of the FETI-DP coarse problem. We
combine the nonlinear FETI-DP domain decomposition method with an AMG (Algeb-
raic Multigrid) method and obtain a hybrid nonlinear domain decomposition/multigrid
method. We can show parallel scalability for up to 262 144 cores on the MIRA BlueGene/Q
supercomputer (Argonne National Laboratory, USA) for our new implementation.

Robustness with respect to discontinuities in the coe�cients of the partial di�er-
ential equation is another important and desirable property of domain decomposition
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methods. Adaptively computed coarse spaces can be used to obtain independence on
the coe�cient jumps for highly heterogeneous problems, even when coe�cient jumps
inside subdomains and across subdomain boundaries are present. In this talk, a construc-
tion of a coarse space for the FETI-DP domain decomposition method applied to highly
heterogeneous problems is presented. The strategy is based on solving local generalized
eigenvalue problems. For certain problems with highly varying coe�cients, e.g., from
multiscale simulations, the coe�cient jump will appear in the condition number bound
even if standard techniques as scaling and the weighting of constraints are used. The
FETI-DP theory is revisited and two central estimates are identi�ed where the depend-
ency on the coe�cient contrast can enter the condition number bound. The �rst is a
Poincaré inequality and the second an extension theorem. These estimates are replaced
by local eigenvalue problems. Enriching the FETI-DP coarse space by a few numerically
computed eigenvectors yields independence of the contrast of the coe�cients even in
challenging situations.
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Abstract

Uncertainties a�ect the accuracy of nonlinear static or dynamic optimization and in-
verse problems. The propagation of uncertain model parameters towards the optimal
problem solutions can be assessed in a deterministic or stochastic way using sensitivity
analysis or Monte Carlo based techniques. This paper presents cost function transform-
ations for reducing the impact of uncertain model parameters towards the optimal solu-
tions. We assess the consistency of the methodology by determining the conditions on
the cost function transformations.

Key words: cost function, optimization, robustness, uncertainty
MSC 2010: 46N10, 47N10, 80M50, 90C31, 62G35

1 Introduction

Noise in measurement data and modeling errors lead to a deterioration of the optimal solu-
tions’ accuracy in optimal design problems and inverse problems. The impact of model para-
meters on the given static or dynamic model’s outputs, can be assessed by performing e.g. a
sensitivity or Monte Carlo analysis. Electromagnetic devices typically exhibit uncertainties
toward uncertain material, geometrical or source parameters since they may contain para-
meter values that are di�cult to determine or that their value is known to be situated within
a certain range. Recently, techniques have been proposed that reduce the impact of uncertain
model parameters in applications based on electromagnetic principles: reduction of the un-
certain electrical conductivity parameter on electroencephalographic source reconstruction
[1]; reduction of the uncertain geometrical parameters on the magnetic material identi�cation
of an electromagnetic inductor [2].

The work addresses the following speci�c class of problems: a sought vector x ∈ Ωx ⊆ Rp
needs to be estimated based on degraded data or objective y ∈ Ωy ⊂ Rq . Let f : Ωx ×
Ωu → Ωy denote the forward model that includes the physics of the system under study.
Next to parameters x to be estimated, f depends on uncertain parameters u ∈ Ωu ⊆ Rr .
This paper discusses the propagation of u towards solutions in deterministic nonlinear least-
squares problems.
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2 Cost function transformations

In order to perform the analysis we have the following de�nitions. A least-squares for-
mulation is often used to �nd a best parameter value x∗ ∈ Ωx which is a minimum for
γ (x,u,y) = ‖f (x,u) − y‖22 over x ∈ Ωx . A l2-norm formulation is used here for clarity.
De�nition 1 Function x∗ : Ωu × Ωy → Ωx is the propagation function of the uncertain model
parameters towards the reconstructed parameters:

x∗ (u,y) = arg min
x∈Ωx

γ (x,u,y). (1)

Let us consider a transformationT on the forward model, e.g. a �rst order transformation
T f (x,u) = f (x,u) + (v(x,u) · ∇u )f (x,u) for a certain function v(x,u) : Ωx × Ωu → Ωv ⊆ Rq .
In case, the function is speci�ed as ṽ(x,u), the associated transformation becomes: T̃ f (x,u) =
f (x,u) + (ṽ(x,u) · ∇u )f (x,u).
De�nition 2 This transformation changes the cost function γ into γ̃ and thus the transformed
propagation function: x̃∗ (u,y) = arg minx∈Ωx γ̃ (x,u,y).

De�nition 3 Let the function ṽ(x,u) be de�ned as (case of l2-norm):

ṽ(x,u) = arg min
v∈Ωv ⊆Rq

‖f (x,u) + (v · ∇u )f (x,u) − y‖22 . (2)

We investigate whether a determined stationary point of the iteration coincides with the
optimum of the model using actual uncertainty value ua . Not every γ̃ formulation is successful
for having the algorithm to be consistent.
Lemma 1 We assume that ifγ (x,ua ,y) is locally convex at x∗a , than thenγ (x,u,y) is also locally
convex at x∗a . We further assume that ∇x (v(x∗a ,ua ) · ∇u )f (x∗a ,ua ) = 0. Any local minimizer
γ (x,ua ,y) for given measurement y is a local minimizer of γ̃ (x,u,y) .

Assumption 1 (a) Function ṽ is continuously di�erentiable towards x, ∀u ∈ Ωu . (b) Meas-
urement or objective y is reachable by the forward model f . (c) f (Ωx ,Ωu ) is a di�erentiable
manifold.

Theorem Let x be the �xed point of the γ̃ minimization and let γ (x,ua ,y) for given measure-
ment y be locally convex at x, then the point x is a local minimizer of γ (x,ua ,y).

Proof. The sequence of ṽ-operators becomes in the limit: v(x,u) = arg minv∈Ωv ⊆Rq ‖f (x,u) +
(v(x,u) · ∇u )f (x,u) − y‖22 . Since f (Ωx ,Ωu ) is a di�erentiable manifold,

v(x,u) = arg min
v∈Ωv ⊆Rq

‖ ((u − ua ) · ∇u )f (x,u)) − (v(x,u) · ∇u )f (x,u)‖22

is equivalent. The Tk operators in the k-th iteration converge therefore to T with v(x,u).
This ends the proof. �
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Abstract

In recent years, dense gases have been studied extensively because of their interesting
peculiar properties; speci�cally, dense gas �ows have shown a potential for many engin-
eering applications. Description of dense gas motion, e.g. through a Computational Fluid
Dynamics (CFD) solver need a closure model to represent the thermodynamic behaviour
of the �uid, i.e. an Equation of state (EOS). In spite of many improvements, EOS still suf-
fer from a lack of knowledge about their mathematical form and closure parameters, thus
it is necessary to evaluate the impact of this uncertainty on the code output. In this work,
we use uncertainty quanti�cation (UQ) techniques to: (i) propagate the uncertainty about
EOS parameters through the dense gas solver and (ii) to calibrate EOS parameters thanks
to some available data. The last step uses a Bayesian model update framework account-
ing for both parametric and model-form uncertainties. Bayesian calibration techniques
are presented with focus on statistical modelling of model-form uncertainties, and their
potential for robust CFD predictions of dense gas �ows is shown up.

Key words: Uncertainty quanti�cation, Bayesian inference, CFD, dense gas �ow

Numerical simulations of dense gas �ows can be extremely sensitive to the model used
to describe the �uid thermodynamic behavior [1]. For many dense gases, accurate and com-
prehensive equations of state (EOS), i.e. thermodynamic laws designed to describe the �uid
thermal and caloric behavior in the region of interest, are not available. As a consequence, re-
liable simulations of compressible �ows with complex thermodynamic behavior require the
quanti�cation of thermodynamic modeling errors, especially for applications that look for
improvements of the order of a few percents of the system performance.

EOS give raise to two kinds of uncertainties: the �rst one concerns the mathematical
form of the EOS to be used for a given �uid; on the other hand, the material-dependent coef-
�cients associated to the EOS are imperfectly known. Previous work [1] has shown that for
some particularly complex gases the model-form uncertainty can be even overwhelming with
respect to the parametric uncertainty.

In this work, we adopt a Bayesian approach to quantify EOS uncertainties associated to
thermodynamic models used for dense gas �ow simulations. Speci�c interest is put into the
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stochastic representation of model-form uncertainties and their consequences on both calib-
ration and prediction. Our aim is to develop a robust calibration allowing reliable predictions
of con�gurations di�erent from the calibration one.

The application case under study is the transonic �ow of a silicon oil, namely cyclopentas-
iloxane (D5), past an airfoil, as in [1]. Numerical solutions of �ow equations are generated by
means of a �nite volume code using a third-order accurate numerical scheme [2]. The code
is supplemented with real-gas equations of state, namely the cubic Peng-Robinson-Stryjek-
Vera [3] (PRSV) and Soave-Redlich-Kwong [4] (RKS) EOS, and the �ve-term virial Martin-Hou
model [5] (MAH). Since no experimental data are available, synthetic calibration data are gen-
erated for this case by means of a reference EOS based on Helmholtz free energy [6].
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(b) Peng-Robinson

Figure 1: Posterior expectancy of the wall pressure coe�cient ( ) ±3σ ( ), prior expect-
ancy ( ), experimental data (�) and associated error bars.

Some preliminary results for model calibrations based on a multiplicative and correlated
stochastic model are depicted in Figure 1.

The �nal paper will present results for di�erent calibration strategies, and their assess-
ment for the prediction of dense gas �ows.
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Abstract

The Reduced Basis Method generates low-order models of parametrized partial di�er-
ential equations (PDEs) to allow for e�cient evaluation of parametrized models in many-
query and real-time settings. We use the Reduced Basis model order reduction technique
to generate a low order model of an electromagnetic system governed by time-harmonic
Maxwell’s equations. The reduced order model then makes it feasible to analyze the un-
certainty by a Monte Carlo Simulation. Stochastic Collocation is employed as a second
technique to estimate the statistics. In particular the combination of model order reduc-
tion and Stochastic Collocation allows low computation times.

Key words: Electromagnetic analysis, Maxwell equations, Reduced Basis Method, Re-
duced Order Systems, Uncertainty Quanti�cation

1 Application Model

As an example model, we consider the coplanar waveguide, shown in Fig. 1. The model setup
is contained in a shielded box with perfect electric conducting (PEC) boundary. We consider
three perfectly conducting striplines as shown in the geometry. The system is excited at a
discrete port and the output is taken at a discrete port on the opposite end of the middle
stripline. These discrete ports are used to model input and output currents/voltages.

Figure 1: Geometry of a coplanar waveguide.

We are interested in parameter stud-
ies of the input-output behavior of electro-
magnetic models. Therefore, we need to
compute the electromagnetic �eld induced
by the applied current. We simulate Max-
well’s equations in the second order time-
harmonic formulation

∇ × µ−1∇ × E + jωσE − ω2ϵE = −jωJ , (1)

and solve for the electric �eld E. The equa-
tion is discretized with Nédélec �nite ele-
ments (see [1]), over the entire shielded box
as the computational domain. The parameter vector is denoted by ν ∈ D ⊂ Rp , such that
E (ν ) is the parameter-dependent electric �eld solution.
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2 Reduced Basis Model Reduction

Model Order Reduction (MOR) allows to signi�cantly reduce the computational time required
for parameter studies. MOR substitutes the large-scale model by a model of low order, which
approximates the transfer behavior. The aim of the Reduced Basis Method (RBM) is to de-
termine a low order space XN of dimension N , which approximates the parametric manifold
Mν = {E (ν ) |ν ∈ D} well. Assuming su�cient smoothness of Mν , a space XN can be determ-
ined, such that projecting the variational form onto XN gives good approximations EN (ν ) to
E (ν ). The space XN is spanned by snapshots of the �eld solutions for a discrete set of para-
meter realizations. The snapshot locations are chosen in a greedy process using a rigorous
error estimator. The error estimators ∆N (ν ), which give rigorous bounds to the approxima-
tion error in the H (curl) norm:

‖E (ν ) − EN (ν )‖H (curl) ≤ ∆N (ν ), (2)

are used to certify the accuracy of the reduced order model. See [2] for more details.

3 Stochastic Collocation

Let (Ω,F ,P) denote a probability space. Given is a square integrable random variable Y :
Ω → R with probability density function f and a function д : Γ → Rd , corresponding to a
mapping of realizations of a random variable to the output of the electromagnetic system.

Stochastic collocation computes statistical quantities like the mean by a quadrature rule

E(д(Y )) =

∫

Γ
д(x ) f (x )dx ≈

n∑

i=1
д(ξi )wi , (3)

where the realizations ξi are the sample points and the weights wi are determined using the
probability density function f . See [3] for more details.

In statistical analysis the expectation and variance of quantities of interest like the trans-
fer behavior under uncertain parameters is computed. For this purpose, stochastic collocation
uses a quadrature rule. To further enhance the computation speed of statistical quantities,
stochastic collocation is combined with reduced basis model order reduction. This allows to
quantify models of a much larger complexity.
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Abstract

Ultrasonic measurements are often based on the estimation of the time-of-�ight of
the waves through materials or structures. When signals are in close temporal proximity
to the signal of interest, additional bias errors are introduced in ToF estimator. A novel
optimization technique based on reiterative deconvolution is presented for accurate time
of �ight estimation for signals where re�ections are sparse yet close to each other in the
time domain.

Key words: Deconvolution, iterative algorithms, time measurements, time of arrival es-
timation, ultrasonic variable measurements.

MSC 2010: 62M10, 60G35, 65F10, 68U20

1 Introduction

Many ultrasonic testing applications are based on the estimation of the time-of-�ight (ToF) or
time delay estimation (TDE): thickness, load [1, 2] and etc. meters all employ the ultrasound
propagation time to extract the required properties of the test object. Usually correlation
processing is used for signal-to-noise (SNR) improvement and the cross-correlation function
(CCF) maximum location [3, 4] is assigned as ToF estimate. Automated CCF peak location
and ToF estimation is complicated in case of multiple re�ections presence in the signal. Our
aim was to develop the technique for the reduction of the additional bias errors.

2 Reiterative deconvolution for TOF estimation

Iterative deconvolution has been suggested as simple technique to separate the re�ections
[5]. Once the position ToFi of highest peak for subtraction is found then estimation of the
multiplier Ai for reference signal to subtract is obtained using shifted reference signal refk
and received signal sk , the reference signal can be subtracted and the residual saved for next
iteration i + 1:

si+1,k = si,k −Ai · refk . (1)

If bias error is signi�cantly reduced if interfering signal is removed by iterative deconvo-
lution procedure then we suggest applying new reiterative deconvolution:
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First iteration: ToF for largest re�ection is obtained and this largest re�ection subtracted
using equations (1); ToF for second largest re�ection is obtained from the remainder signal.
This process is repeated until all re�ections are subtracted.

Reiteration: re-estimation of the re�ection position (ToF) and amplitude are obtained
from the remainder after subtraction of other estimated re�ections from the original signal.
Second iteration is repeated until there is no signi�cant bias errors reduction.

The results of the numerical simulation using the real signals con�rm that time estimation
error quickly diminishes when reiterative deconvolution is used.

(a) (b)

Figure 1: (a) Example of detected simulated signals; (b) ToF errors vs. estimation technigues
for rectangular pulse.
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Abstract

Probability density functions (PDF) of random concentrations are modeled by Fokker-
Planck equations. Numerical solutions for the joint concentration-position PDF are ob-
tained by a global random walk (GRW). Drift and di�usion coe�cients describing the
PDF transport in physical space are provided by up-scaling procedures. Mixing models
for concentration dynamics may be inferred from comparisons with Eulerian PDF equa-
tions or, alternatively, from measured or simulated concentration time series. The latter
approach is used to construct a GRW-PDF numerical solution to a problem of contamin-
ant transport in heterogeneous groundwater systems.

Key words: PDF methods, mixing, random walk
MSC 2010: 60J60, 60G60, 86A05

1 Eulerian and Fokker-Planck PDF equations

Species concentrationsC (x,t ) linked through the reaction term S (C ), with constant di�usion
coe�cient D, are transported in a random velocity �eld V according to

∂tC + ∇(VC ) = D∇2C + S (C ). (1)

The Eulerian PDF f (c; x,t ) of the random concentration C solving (1) veri�es

∂t f + ∇(V f ) = ∇2 (D f ) − ∇2c (Mf ) − ∇c (S f ) , (2)

where V = 〈V〉 − ∇D is the up-scaled drift and 〈V〉 the mean velocity, D = D + D∗ is the
di�usion coe�cient up-scaled through the gradient-di�usion closure 〈V − 〈V〉|C(x, t) = c〉 =
−D∗∇f , ∇c is the gradient in the concentration space, and M = 〈D∇C∇C |C (x,t ) = c〉 is the
conditional dissipation rate which accounts for molecular mixing [1, Sect. 6.2]. The reaction
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term S occurring in (2) is in a closed form, the same as in the concentration balance equa-
tion (1), which is the essential advantage of the PDF method [1]. A Fokker-Planck equation,
formally the same as (2) but with a new mixing term M = 〈D∇C∇C |C = c,X = x〉, governs
the joint concentration-position PDF p (c,x,t ) = f (c; x,t )ρ (x,t ), where ρ (x,t ) is the position
PDF (i.e. the ensemble mean concentration). The equivalent particle representation is given
by the Itô equations

dX(t ) = V (X,t )dt + dW(X,t )
dC (X(t )) = M (C (X(t )))dt + S (C (X(t ))dt , (3)

where W is a Wiener process with E{W(X,t )} = 0 and E
{

W2 (X,t )
}

= 2
∫ t

0
D (X,t ′)dt ′.

2 GRW solutions to modeled PDF equations

An e�cient solution to (3) is obtained by a GRW algorithm consisting of a superposition
of many weak Itô schemes projected on a regular lattice [3]. The GRW-PDF approach is
illustrated for random concentrations integrated over the y-axis of a two dimensional aquifer
model. The up-scaled coe�cientsV andD are estimated through a self-averaging �rst-order
approximation [2]. The slope of the mean concentration at the plume center of mass models
the mixing term M . The behavior of the PDF at the plume center of mass and a comparison of
the cumulative probability distributions with the Monte Carlo results are shown in Figure 1.

(a) Transported PDF at the plume center of mass,
f (c;x ,t ), x = Vt .

(b) GRW and Monte Carlo cumulative distribution
functions cdf(c;x ,t ), x = Vt , t = 0,10,30,50,100 days
(from right to left).

Figure 1: Concentration probability distributions.
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Abstract

In this work we consider a model that describes the �ow in a porous medium of a
mobile species which precipitates into an immobile precipitate, leading to the forma-
tion/degradation of crystals inside a porous matrix. The �ow is governed by a Darcy
problem, where the permeability is changed according to the solute concentration. The
dissolution rate is described by a set valued function. The problem has been solved nu-
merically by a treatment of the discontinuity based on event-driven methods. We will
present some analytical results about the model, and we will compare the results obtained
by the application of event-driven methods against regularization methods, showing that
our method captures the discontinuity more accurately.

Key words: reactive �ow, porous media, event-driven, precipitation, dissolution model.

1 Introduction

A characteristic of reactive �ow in porous media is sometimes the presence of phenomena that
at the macroscale level are represented by a discontinuous reaction term, with a discontinuity
that depends on the solution itself. This class of problems may be interpreted as di�erential
inclusions, [1]. We follow here an approach, alternative to regularization, based on detecting
when the solution reaches the discontinuity, and select its behavior according to Filippov
theory [2]. This method may guarantee optimal convergence at a reasonable computational
cost, and allows for the resolution of sliding motions, when the solution, after reaching the
discontinuity surface, slides onto it.

2 Model problem

The adimensionalized equations for the concentrations of the mobile species u and the im-
mobile precipitate v , complemented with suitable boundary conditions, are [3]:


∂

∂t
(u +v ) − ∇ ·

(
∇u − qu

)
= 0 in ΩT ,

u = u0 in Ω for t = 0,


∂

∂t
v ∈ r (u) − H (v ) in ΩT

v = v0 in Ω for t = 0
(1)

where q is the velocity vector �eld of the �uid. Here the production rate r (u) is a locally
Lipschitz continuous function and the dissolution rate H (v ) is described by the Heaviside
distribution.
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In this work the velocity �eld q is not a given function, but the solution of a Darcy problem
where the scalar permeability k depends on the porosity. With the increase of the precipitate
concentration there is a consequent reduction of porosity, an empirical law for the variation
of porosity with varying precipitate concentration is given as dϕ

dt = −dvdt . The permeability
thus depends on the precipitate concentration ask (ϕ) = (ϕ)2 → k (ϕ (v )) = (1−v )2, to account
for degradation/growth of the crystal.

The problem has been solved numerically by a treatment of the discontinuity based on
event-driven methods [1]. We have applied it to a simple test case: the domain is a 2D square
Ω := (0,1) × (0,1), with a Dirichlet boundary ΓD := {y : x = 0, y ∈ (0,1)} and ΓN := ∂Ω \ ΓD .
Moreover, the viscosity is set to µ = 1 and precipitation is modeled as r (u) = u. An horizontal
pressure gradient is imposed from left to right and, at the in�ow boundary, we set u = 0. The
initial conditions are u0 = 0 everywhere, and v0 = 0.8 only in Ωv := {(x ,y) : 0.4 ≤ x ≤
0.6, 0.4 ≤ y ≤ 0.6}, i.e. the precipitate is present only in a part of the domain.

(a) t = 0.3. (b) t = 0.6. (c) t = 1.

(d) t = 0.3. (e) t = 0.6. (f) t = 1.

Figure 1: Solute (u) and precipitate concentration (v). Streamlines and magnitude of the velocity �eld q.

The solution exhibits an attractive sliding motion in Ω \ Ωv , where, as a consequence,
the precipitate concentration v remains constant and equal to 0. It can be observed that the
velocity q increases in Ωv as the precipitate dissolves.

In this talk we will present some analytical results, as well as details on the numerical
treatment, and we will compare the results obtained by the application of event-driven meth-
ods against regularization methods, showing that our method captures the discontinuity more
accurately, obtaining sharper dissolution fronts.
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Abstract

Surfactant transport and retention in the reservoir plays an important role in the ef-
fectiveness of a well stimulation procedure. For a given reservoir �uids-matrix-surfactant
system, a limiting surfactant concentration may determine the technical/economic suc-
cess or failure of the well intervention. Therefore, an accurate modeling and simulation
of the coupled transport and retention mechanism are important for the surfactant de-
ployment design. We propose a mathematical model of the surfactant transport in the
reservoir, accounting for matrix adsorption and surfactant dissolution in liquid phases.
An equivalent probability density function transport equation of the surfactant is used
to describe the transport and retention of the scalar. The model predicts the evolution of
surfactant distribution in the reservoir in matrix and soluble phases. Preliminary simula-
tions indicate that the surfactant adsorption on the solid matrix is ca. 10-15%, depending
on the physical-chemical properties of the stimulation �uid. The comparison of simula-
tion results with experimental data indicates a maximum deviation of 5%. The model can
be used for deployment optimization procedures in Gastim projects.

Key words: transport, adsorption, porous media, stochastic method.

1 Introduction

When chemical stimulating �uids are used for both, well remediation and stimulation op-
erations and enhanced oil recovery processes, complex mass transfer, phase transitions and
transport properties alteration [1] coupled physicochemical processes are present. Some pro-
cesses are: surfactant advective, di�usive and dispersive transport, mixing and dissolution of
surfactant with miscible phases, micro-emulsions generation, surfactant adsorption on matrix
surface, surface and interfacial forces alteration, and others.

Recent developments in gas phase stimulation techniques (Gastim) [2, 3] indicate that the
gas phase as carrier �uid enables a better transport and mobilization of the chemical agent in
the reservoir. A full understanding of the underlying phenomena is of paramount importance
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for designing and optimizing gas-based well - chemical stimulation procedures. As an initial
approximation, we model the transport of a surfactant carried by a compressible �uid in a
reservoir with gas-condensate blockage, following a state-of-the-art procedure [4].

2 Numerical solution

Flow equations are solved in cylindrical coordinates using the �nite-volume method, and the
resulting PDF equation is solved following a Lagrangian Monte-Carlo Method as described
in [4]. The �ow solver was calibrated with well-head pressure measured in a previous pilot
and further scaled to bottom-hole �owing pressure. Results of the calibration are presented
in Fig. 1(a). The model predicts the evolution of surfactant distribution in the reservoir in

(a) Bottom-hole �owing pressure. (symbol: measure-
ment; line: simulation)

(b) Radial distribution of adsorbed surfactant on the
matrix and concentration front.

Figure 1: Preliminary results.

matrix and soluble phases. After 8 days of continuous surfactant injection in the gas phase,
the adsorption in radial direction is presented in Fig. 1(b), as well as the total concentration
front (i.e., mass of surfactant dissolved in gas, water and oil phases, and adsorbed per unit of
porous volume).
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Abstract

In this work we study some Hermite �nite element methods that can be used as ad-
vantageous alternatives to classical mixed methods, in the framework of heat or �uid
�ow simulations. More precisely we consider methods that are Hermite analogs of well-
established mixed �nite elements for �ow in porous media or heat transfer, such as the
lowest order Raviart-Thomas method [6] and its extensions to convection-di�usion prob-
lems proposed by Douglas and Roberts [2]. We also present results on the Zienkiewicz
triangular plate element [8] as applied to represent the velocity in viscous incompressible
�ow.

Key words: Convection-di�usion, �nite element, Hermite, incompressible �ow, mixed

1 Introduction

Historically Hermite �nite element methods were introduced to solve fourth order elliptic
or parabolic equations, modeling a certain number of problems in Solid and Fluid Mechan-
ics. Among well-known applications in this framework lie plate bending problems (cf. [3])
and the incompressible Navier-Stokes equations in terms of the stream function or the vector
potential (cf. [5]). This is because this kind of methods using derivatives as degrees of free-
dom, seems quite natural to ensure an acceptable conforming representation of the solution.
The fact that second order problems do not require this kind of approach to attain the same
goal, is probably the reason why the use of Hermite �nite element methods in this context
had not been throughly exploited until very recently. Instead, whenever the direct represent-
ation of derivatives, �uxes or quantities alike is required, most authors consider the use of
natural mixed formulations, in which the main unknown function and such related quantit-
ies are the multiple unknown �elds of a system equivalent to the original equation. On the
other hand sometimes the direct representation of derivatives is not essential. This is the
case of incompressible viscous �ow. However it turns out that the use of a Hermite velocity
representation involving its �rst order derivatives can provide means to reduce the compu-
tational time in �ow simulations. In this work we endeavour to illustrate the advantages of
two types of Hermite �nite elements as compared to mixed methods having either the same
global amount of degrees of freedom or the same order.
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2 Scope of the work

In the work’s �rst part we consider Hermite analogs of the two extensions of the lowest order
Raviart-Thomas mixed element [6] for �ow in porous media proposed by Douglas and Roberts
in [2] to treat convection-di�usion phenomena such as heat transfer. Complete convergence
results are demonstrated for both new techniques including the one introduced in [7]. Our
analysis shows that, in contrast to their mixed counterparts, the Hermite methods are second
order convergent in L2, provided the Péclet number is not so high. Several numerical results
for academic problems illustrate such convergence properties.

In the second part of our work we study an application of Hermite �nite elements to the
Stokes system in terms of the primitive variables in Galerkin formulation. More precisely the
velocity is represented by the reduced cubic Zienkiewicz plate element, while the pressure
is interpolated by means of standard continuos piecewise linear fucntions. Optimal second
order convergence results obtained in [1] for the case of criss-cross meshes are extended to
more general situations. The method is shown to perform better than the popular Taylor-
Hood triangular element [4], which has the same order thanks to its velocity representation
by means of Lagrange piecewise quadratic functions.
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Abstract

Small GTPases are key regulators of membrane tra�cking. The cycling of these
GTPases between active and passive states and between cytosolic and membrane-bound
states is essential for their function. The mathematical modeling of this scenario leads
us to a coupled system of reaction-di�usion equations inside and on the membrane. For
our numerical investigations, the membrane is implicitly treated in a di�use-interface
approach to study the in�uence of Turing-type mechanisms for the localization of act-
ive/inactive GTPases. Furthermore, we use a phase �eld method in order to simulate a
reaction-di�usion system which is coupled to the dynamics of the membrane.

Key words: Numerical simulations of reaction-di�usion systems, PDE’s on surfaces,
Reaction-di�usion systems, Turing instability

MSC 2010: 92C37,35K57,35Q92

1 Introduction

In this contribution, we study a mathematical model for a GTPase cycle presented and ana-
lyzed in [3] and [4]. Thereby, we will represent the cytosolic volume and the membrane of a
cell by a bounded, connected, open domain B ⊂ R3 in space and its two-dimensional bound-
ary Γ := ∂B, respectively. We assume that Γ is given by a smooth, closed surface and denote
by ν the outer unit normal of B on Γ. Moreover, we �x a time interval I := [0,T ] ⊂ R and
consider smooth functionsV : B× I → R,u,v : Γ× I → R (representing the cytosolic inactive,
membrane-bound active, and membrane-bound inactive GTPase, respectively) that satisfy the
coupled reaction–di�usion system (stated in a non-dimensional form)

∂tV = D∆V in B × I , (1)
∂tu = ∆Γu + γ f (u,v ) on Γ × I , (2)
∂tv = d∆Γv + γ (−f (u,v ) + q(u,v,V )) on Γ × I , (3)

−D∇V · ν = γq(u,v,V ) on Γ × I (4)

on and inside Γ. Here f and д model the activation/inactivation processes and q describes
attachment/detachment at the membrane. The non-dimensional parameter γ > 0 is related to
the spatial scale of the cell. The coupling of bulk and surface equations in (1)–(4) is given by
a Robin-type boundary condition. Furthermore, we assume initial conditions for the system
at time t = 0.
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2 Linear Stability Analysis

We present a linear stability analysis of the reaction–di�usion system (1)–(4). We study the
stability of spatially homogeneous stationary states and �nd two possible scenarios for a dif-
fusive instability. The �rst is similar to a classical Turing instability in the u,v variables and
is only possible for large di�erences in lateral di�usion coe�cients for u andv (i.e. for a coef-
�cient d � 1). The second mechanism on the other hand does also occur for equal lateral
di�usion constants (i.e. for d = 1) and is rather based on the di�erent di�usion constants for
u and V and therefore on the coupling of bulk and surface equations. As cytosolic di�usion
is typically by a factor hundred faster than lateral di�usion, this scenario is much more real-
istic in the application to signaling networks. Moreover, we compare the stability of the full
system (1)–(4) to its reduction in the formal limit D → ∞. This reduction leads to a non-
local two-variable system on the membrane that has been analyzed in [3]. The results of the
stability analysis for the reduced model are similar to the results of the full system.

3 Numerical Treatment

We use a phase-�eld approach for the coupling of bulk and surface PDE’s appearing in (1)–(4).
We follow the di�use interface descriptions for PDE’s on surfaces [1, 5], in the bulk [2] and
for the coupling [6, 7]. We will present numerical simulations for speci�c versions both of the
full system and of the reduced system. The simulations con�rm the instability criteria derived
in the linear stability analysis and allow to investigate the time-evolution after the onset of
heterogeneities and beyond the regime governed by the linearization. It turns out that even
for simple choices of the constitutive relations f and q the system exhibits a rich behavior.
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Abstract

A numerical method for simulating the dynamics of an incompressible elastic lipid
membrane imbedded into viscous �uid is discussed. A new elliptic equation for the mem-
branes tension implying local incompressibility of the membrane is introduced. Forces
acting on the �uid from the membrane are implemented by the immersed boundary
method.

Key words: incompressible lipid membranes, Willmore functional

1 Motivation and formulation of the problem

Mathematical modeling of lipid membranes and related mathematical problems as Willmore
�ow attracted much attention in last years. Lipid bio-membranes envelope cells and divide
them into compartments. They also play a role in dynamic processes such as transport and
signaling in cells. Direct micro-manipulation of arti�cial membranes is used to monitor bio-
chemical enzyme reactions.

We consider here the Navier-Stokes equations as a model for incompressible viscous �uid
with imbedded membrane Γ acting on the �uid with a force F concentrated on the smooth
surface Γ:

F =W + 2σHn + ∇Γσ + θn, (1)

where W =
[
−2κ

(
∆ΓH + 2H

(
H 2 − K

))]
n, W the bending force, and 2σHn the Young-

Laplace force both acting in the normal direction n. The elastic tension force ∇Γσ acts in
the tangential direction along Γ.

The operator ∆ΓH + 2H
(
H 2 − K

)
is the Euler-Lagrange operator of the Willmore func-

tional
∫

Γ
H 2dS . Here ∆Γ is the Laplace-Beltrami operator, H and K are the mean an Gauss

curvatures of Γ, κ is the bending modulus, σ is tension and θ is the osmotic pressure between
the inside and the outside of Γ.

The coupling between the �uid and the membrane is approximated by the immersed
boundary method with force δ̃ΓF where a smooth function δ̃Γ approximates the delta function
δΓ on the surface Γ:

∂u
∂t
+ u · ∇u = −∇p + µ∆u + δ̃ΓF; div u = 0
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We use the notation V for the velocity of the membrane. Lipid membranes are kept locally in-
compressible by tension forces. This property implies a constrain on the in surface divergence:
divΓ V = 0 of V. Membranes are nonpermeable and satisfy non-slip boundary conditions on Γ:
V = u. The operator splitting is used to approximate solutions of the �uid equations together
with the equations for the membrane. At each time step ∆t the system of equations for the
membrane velocity V and the mean curvature vector H is solved :

∂V
∂t

= δ0
( [
−2k

(
∆ΓH + 2H

(
H 2 − K

))]
n + 2σH + ∇Γσ + θn

)
(2)

∂H
∂t

=
1
2∆ΓV

for points on the surface Γ,and δ0 = const . We solve these equations in a semi-implicit fashion
�rst with tension σ = σn taken from the previous time step n and then with σn+1 = σn +ψ
corrected to so that the corresponding velocity becomes divergence free on the surface. This
constrain implies an elliptic equation for the tension correctorψ :

∆Γψ − 4ψ ���H(n+1) ���2 = − [
divΓ

(
V(n+1)

)] (
1

δ0∆t

)
(3)

The situation is similar to the one with incompressible Navier Stokes equation, where pres-
sure corresponding to a divergence free velocity �eld must satisfy the Poisson equation. The
exact volume conservation constrain for a closed not permeable membrane is implemented
by adjusting at each time step the parameter θ in (2) together with σ .

2 Examples

The numerics is illustrated in Fig. 1 by two examples of the deformation and streamlines
pictures: one with a nano-tube pulled out from an ellipsoidal membrane by external force
and another one with the relaxation of initially ellipsoidal vesicle to the red blood cell form.

(a) Pulling out a nano-tube (b) Relaxation to erythrocyte form

Figure 1: Vesicle with pulled out nanotube.
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Abstract

An adaptive space-time discontinuous Galerkin �nite element method is studied for
the advective Allen–Cahn equation. Time discretization is performed by Gauss-Radau
discontinuous Galerkin �nite elements, while symmetric interior penalty Galerkin method
is used for space discretization. Numerical results for one and two dimensional droplet
breakup models are presented to show the e�ciency of the adaptive algorithm.

Key words: discontinuous Galerkin method, space–time adaptivity, Allen–Cahn equa-
tion

1 Introduction

We consider the advective Allen-Cahn equation [3] for a di�usive interface surface tension
model

ut + ∇ · (uV) + ϵ∆u = 1
ϵ
f (u) (1)

with Ginzburg–Landau free energy E (u) =

∫

Ω

(
ϵ |∇u |2 + 1

ϵ
F (u)

)
and F (u) = u2 (1 −u)2 is the

bistable double–well potential that characterizes the two phases in which case f (u) = F ′(u) =
2u (1 − u) (1 − 2u) and V is prescribed velocity �eld. We assume no boundary �ow condition,
i.e ∂u

∂n = 0 on ∂Ω.
The advective Allen–Cahn equation (1) represents surface tension of the droplet breakup

phenomena under the in�uence �ow �eld. The velocity �eld V is divergent free, when the
the velocity �eld satis�es the Navier–Stokes equation. We consider droplet breakup phenom-
ena under compressible �ow. In this situation the velocity �eld V is not divergent free; it is
expanding ∇ · V > 0 or contracting ∇ · V < 0.

The non-local Allen-Cahn equation is

ut + ∇ · (uV) + ϵ∆u = 1
ϵ
f (u) + λu (2)

where the Lagrange multiplier λ is given by λ =
1
ϵ

1
M

∫

Ω
f (u) so that

∫

Ω
u is a constant mass

M .
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The local (1) and nonlocal (2) Allen–Cahn equations are discretized in space by the sym-
metric interior point discontinuous Galerkin method (SIPG), due the �exibility an adaptive
meshes and mass conservation. For time integration we use also discontinuous Galerkin
Gauss–Radau method in time [1], which is strongly stable and preserves the energy decreas-
ing property of the Allen–Cahn equation. Allen–Cahn equation evolves on two di�erent
time scales, the small surface time scale for small ϵ and convective time scale. The sti�ness
of Allen–Cahn equation is characteristic for sharp interface problems with small ϵ , whereas
numerical schemes require that meshes have to locally re�ned. We apply modi�ed version
of space-time adaptive DG method linear di�usion-convection problems in [2] to resolve the
features on small scales.

The disadvantage of the dG methods is the large coupled systems to be solved at each
time step. We use iterative and sparse direct solvers for fast solution of the of the system
of equations arising from space-time DG-FE discretizations. We prove that the Allen–Cahn
model will not break up under certain circumstances due to a maximum principle. Simulations
in one and two dimensions verify the theoretical results and provide more insight into the
dynamics.
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Abstract

We construct a di�erence scheme for the numerical solution of a �rst order partial
di�erential equation with a time delay and a retardation of a state variable. Coe�cients
in the equation are assumed to be dependent on state variable. Such equations are used to
model the dynamic of structured cell populations when age and maturity level are taken
into consideration. For the supplied di�erence schemes the order of approximation error,
stability and convergency order are studied.

Key words: Di�erence scheme, Partial Delay Di�erential Equation
MSC 2010: 65Q20, 65M06

1 Introduction. The problem

First order partial di�erential equations, also known as an advection equations, with distrib-
uted parameters arise in the modeling of dynamics of populations structured with respect to
the cell size, the age of specimen, maturation level etc [1, 2].

Authors [2] note that the dynamics are not only dependent on the behavior of the cell
population numbers some time in the past (time delayed e�ects), but also that the population
behavior at a given maturation level is dependent on the behavior at a previous maturation
level (nonlocal e�ects). Thus, this important biological problem leads, in a rather natural fash-
ion, to an complex mathematical problem involving a delayed nonlocal dynamics described
by a nonlinear advection equation.

Consider the following advection equation with aftere�ect and retardation of state vari-
able

∂u

∂t
+ a(x )

∂u

∂x
= f (x ,t ,u (x ,t ),ut (αx , ·)), (1)

here x ∈ [0;X ] — space and t ∈ [0;θ] — time independent variables; u (x ,t ) — unknown
function; ut (αx , ·) = {u (αx ,t + ξ ), −τ ≤ ξ < 0} — prehistory-function of the unknown
function to the moment t which also involves biasing in state variable, α ∈ (0,1) — constant
of the biasing, a(x ) > a0 > 0 — su�ciently smooth function.

Initial and boundary conditions are set:

u (t ,x ) = φ (x ,t ), x ∈ [0;X ], t ∈ [−τ ; 0], and u (0,t ) = д(t ), t ∈ [0;θ] (2)

Consensual conditions are satis�ed д(0) = φ (0,0).
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2 Di�erence scheme

We follow technique elaborated in [3, 4]. Let N and M be the number of partition points
for [0;X ] and [0;θ] respectively. The uniform grid can be constructed {tj ,xi}Mj=0

N
i=0, where

tj = j∆, j = 0, ...,M , and xi = ih, i = 0, ...,N . Let uij denotes approximate solution u (xi ,tj )

and εij = u (xi ,tj ) − uij , i = 0, ...,N , j = 0, ...,M .
For 0 ≤ s ≤ 1 we consider a family of di�erence schemes, j = 0, ...,M − 1,

u1
j+1−u1

j
∆ + a

(
s
−4u0

j+1−2h/a (f 0j+1−д̇j+1)+4u1
j+1

2h + (1 − s ) −4u
0
j−2h/a (f 0j −д̇j )+4u1

j
2h

)
= f 1j ,

u ij+1−u ij
∆ + a

(
s
u i−2j+1−4u i−1j+1+3u

i
j+1

2h + (1 − s ) u
i−2
j −4u i−1j +3u

i
j

2h

)
= f ij , i = 2, ...,N .

(3)

Here f ij denotes the value of f in the node (i, j ), д̇j = dд(t )/dt
����t=j∆. Since f may depend on

values of u between nodes, approximation is needed to evaluate functional f ij .
We say that the method converges with order hp + ∆q , if there exists constant C, that

‖εij ‖ ≤ C (hp + ∆q ) for all i = 0, ...,N and j = 0, ...,M .

Theorem Let the exact solution u (x ,t ) of the problem (1) thrice continuously di�erentiable by
x and twice continuously di�erentiable by t , �rst derivative of the solution by x is continuously
di�erentiable by t . Then if s > 0.5 the method (3) convergence with order h2 + ∆.

To test the proposed scheme we solved a model of cell dynamics — the system of two coupled
advection equation with a time delay and a retardation of a state variable [2].
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Abstract

In this paper we analyze and numerically solve a problem related to the optimal loca-
tion of green zones in metropolitan areas in order to mitigate the urban heat island e�ect.
So, we consider a microscale climate model and analyze the problem within the frame-
work of optimal control theory of partial di�erential equations. Finally we compute its
numerical solution using the �nite element method, with the help of FreeFem++.

Key words: Parklands, Urban heat island, Optimal control, Partial di�erential equations

1 The environmental problem

We are interested in optimally locate two parklands (Γp1 and Γp2 ) with a �xed total length M ,
whose vegetation is characterized by the leaf area density LAD : (Γp1 ∪ Γp2 ) × (0,zp] → R
(with zp the total height of the vegetation), in order to increase the comfort of the pedestrian
on paved areas in a range of 1 to 2 meters (see Fig. 1) for a time interval I = (0,T ).

2 Mathematical formulation and numerical resolution

From a mathematical viewpoint, we try to minimize the following cost function:

min
(p1,p2,l1)∈Uad

1
2T meas(Γs \ (Γp1 ∪ Γp2 ))

∫ T

0

∫

(Γs \(Γp1∪Γp2 ))×[1,2]
θ (x,t ) dxdt ,

where p1 is the initial position of the �rst park, p2 the initial position of the second one, and l1
the length of the �rst one (that is, Γp1 = [p1,p1+l1] and Γp2 = [p2,p2+l2], with l2 = M−l1). The
set of admissible controls Uad = {(p1,p2,l1) ∈ R3 : a1 ≤ l1 ≤ b1, p1 + l1 ≤ p2, and for k =
1,2, Γpk ⊂ Γsj for any j = 1, . . . ,N}, with 0 < a1 < b1 < M . The state variables in our study
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Figure 1: Computational domain.

will be the velocity u, the pressure p and the temperature θ of wind, and the temperature θf
of vegetation in both parklands Γp1 × (0,zp] and Γp2 × (0,zp]:



∂u
∂t + u · ∇u − ∇ · (Km∇u) + ∇p = θ/θref g
−cdf χ(Γp1∪Γp2 )×(0,zp ] LAD ‖u‖u in Ω × I
∇ · u = 0 in Ω × I
u = 0 on (Γr ∪ Γw ∪ Γs ) × I
u · n = −u∗ on Γ1 × I
u · n = u∗ on Γ3 × I
u · n = 0 on Γ2 × I
u(0) = u0 in Ω



∂θ
∂t + u · ∇θ − ∇ · (Kh∇θ )
= χ(Γp1∪Γp2 )×(0,zp ] LAD Jf ,h in Ω × I
θ = θref on Γ1 × I
∇θ · n = 0 on Γ3 × I
ρcpKh∇θ · n = γ1 (T 4

r − θ 4) on (Γw ∪ Γr ) × I
ρcpKh∇θ · n = σ1γ1 (T 4

r − θ 4)χΓp1∪Γp2
+σ2γ2 (θ

4
f − θ 4)χΓp1∪Γp2

+γ1 (Tr − θ 4) (1 − χΓp1∪Γp1 ) on Γs × I
θ (0) = θref in Ω

with ρcp Jf ,h = ρcpαr−1a (θf − θ ) = σ1γ1 (T 4
r − θ 4f ) + σ2γ2 (θ

4
|Γp1∪Γp2 − θ

4
f ),where α = 1.1, ra is the

aerodynamic resistance (depending on leaf geometry and wind velocity), γ1 is the product of
the Stefan-Boltzmann constant times the emisivity, γ2 is the product of the Stefan-Boltzmann
constant times the emisivity between the foliage and the boundary,Tr is the radiation temper-
ature (computed from incident solar radiation), and σ1,σ2 ∈ [0,1] are attenuation coe�cients
related to vegetal mass density [1, 2].
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Abstract

We investigate the applicability of the drift-di�usion model to the problem of sample
charging in scanning electron microscopy (SEM). The drift-di�usion approach provides
insight into the dynamics of the charging process and may be an interesting alternative
to the currently prevalent Monte Carlo simulations.

Key words: Drift di�usion model, Scanning electron microscope, Secondary electrons

1 Introduction

Usually the SEM charging problem is studied by Monte Carlo (MC) techniques. The advant-
age of the MC approach is in the rigorous semi-classical account of the microscopic physics.
However, the MC method su�ers from the increase of the computational complexity in the
case of long-range potentials. An alternative way to study such poorly conducting samples
has been developed in semiconductor physics and makes use of the drift-di�usion equation.

2 The drift di�usion equation

The drift-di�usion model consists of a set of three coupled, nonlinear PDEs [1].

−∇ · (ε∇V ) =
q

ε0
(p − n), in Ω × [0,T ]

∂n

∂t
+ ∇ · Jn = R, in Ω × [0,T ]

∂p

∂t
+ ∇ · Jp = R, in Ω × [0,T ]

Jn = −Dn∇n + µnn∇V , in Ω × [0,T ]
Jp = −Dp∇p − µpp∇V , in Ω × [0,T ]

RSRH (n,p) =
n2i − np

τn (n + ni ) + τp (p + ni )
.
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Figure 1: The considered geometry for the model

2.1 Boundary conditions

We assume a parallelepiped geometry denoted by Ω Figure 1.

n(x,t ) = ni , p (x,t ) = ni , V (x,t ) = 0, on ∂ΩD × (0,T ]
Jp · ν = 0, on ∂ΩN × (0,T ].

2.2 Charge injection

The primary electrons penetrate the sample up to the maximum range R (E0) [2],

R (E0) = 900ρ−0.8E1.30 for E0 < 10 keV, R (E0) = 450ρ−0.9E1.70 for E0 > 10 keV.

The secondary electrons and holes are created in parity as a Gaussian distribution with the
maximum shifted by 0.3R from the surface into the sample [3],

дSE (x,E0) = дSH (x,E0) =
1
Ei

7.5C
πR2 e

− 7.5
R2 (x−x0)

2
,

For the material like silicon, silicon dioxide with the same backscattered rate (η ≈ 0.2), C is
calculated with the following formula C (E0) = 1.544 E0

R (E0)
.
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Abstract

In this report two methods for optimization over polynomials is presented: Bernstein
expantion and linear matrix inequalities approach.

Key words: Bernstein Expantion, Stability, Multivariable Polynomial, Linear Matrix In-
equality.
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1 Introduction

Numerous problems in control system theory (such as stability of linear and nonlinear sys-
tems, robust stability of uncertain systems, quadratic stability of system for perturbations,
stabilization by linear feedback) involve optimization problems over multivariable polynomi-
als. For example, the basic problem of establishing stability of an equilibrium point consists
of determining a positive de�nite function such that its derivative along the trajectories of
the system is negative. On the other hand the derivative of the state of the system and the
candidate positive function are polynomials. Unfortunately optimization problems over poly-
nomials are in general nonconvex and the corresponding minimization algorithms may get
stuck in a local minimum.

In order to cope with this di�culty various methods have been proposed. In this report
two such methods will be presented: Bernstein expansion of a multivariable polynomial and
linear matrix inequality (LMI) approach (see [1, 2, 3]).

Given a multivariable polynomial the Bernstein expansion gives bounds for the range
set over a box. In order to obtain convergent bounds for the range of a polynomial the initial
box should be segmentially divided into two boxes. The Bernstein expansion is applied to the
robust stability of di�erent uncertain systems.

LMI techniques which mainly is based on sum of squares technique allow to obtain
bounds to the sought solution by solving convex optimization problem.

In the report on the base of di�erent examples from control theory a comparison of the
Bernstein expansionand LMI approach has been given.
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Abstract

A nonlinear parabolic integro-di�erential problem containing an unknown solely
time-dependent Dirichlet condition on a part of the boundary is considered. An addi-
tional integral measurement is used to recover the missing data. A full discretization
method is designed to approximate the unique weak solution to this problem. Cor-
repsonding error estimates are derived.

Key words: nonlinear parabolic integro-di�erential equation, unknown Dirichlet condi-
tion, full discretization, error estimates

MSC 2010: 47J35, 65M12, 65M32

1 Introduction

Let Ω ⊂ Rd , d ∈ N, be a bounded domain with a Lipschitz continuous boundary Γ = Γ1 ∪ Γ2,
with Γ1 ∩ Γ2 = ∅ and |Γ2 | > 0. By ν we denote the outward unit normal vector on Γ. We
consider the following nonlinear parabolic problem



∂tд(u (t ,x )) − ∆u (t ,x ) = F (t ,x ) +

∫ t

0
f (s,u (s,x )) ds in (0,T ) × Ω;

−∇u · ν = h(t ,x ) on (0,T ) × Γ1;
u = α (t ) on (0,T ) × Γ2;

u (0) = u0 (x ) in Ω,

(1)

together with the additional integral measurement
∫

Ω
д(u (t ,x )) dx = E (t ) in (0,T ), (2)

which is needed to recover the solely time-dependent Dirichlet boundary condition α (t ). We
assume that f and д are globally Lipschitz continuous functions in all variables.
∗Research was supported by the IAP P7/02-project of the Belgian Science Policy.
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Such type of parabolic integro-di�erential equations have some applications in reactive con-
taminant transport in the saturated zone, cf. [1, Chap. 15].
The existence and uniqueness of a solution

{u,α} ∈
(
C ([0,T ],L2 (Ω)) ∩ L∞

(
(0,T ),H 1 (Ω)

))
× L2 (0,T )

to the problem (1)-(2), obeying ∂tu ∈ L2 ((0,T ),L2 (Ω)), and a numerical time-discrete ap-
proximation scheme have already been studied in [2] under appropriate assumptions on the
data.

2 Full discretization

We use Rothe’s method [3] withn ∈ N discretization intervals [ti−1,ti ], ti = iτ , i = 1, . . . ,n, for
the time discretization. We work in a �nite dimensional subspaceVh ofV , with discretization
parameter h. We introduce the notation uhi ≈ πhu (ti ), 1 6 i 6 n, and for every other function
z, we write

zhi = πhz (ti ), δzhi =
zhi − zhi−1

τ
, 1 6 i 6 n.

Now, let πh : C (Ω) → Vh be the global interpolant on Vh .
The recurrent approximation scheme for k = 1, . . . ,n reads as (∀φ ∈ Vh )

(
δд(uhk ),φ

)
+

(
∇uhk ,∇φ

)
= (Fk ,φ) − (hk ,φ)Γ1 +

*.,
k−1∑

j=0
f (tj ,u

h
j )τ ,φ

+/-
+ φ |Γ2

E
′
k − (Fk ,1) + (hk ,1)Γ1 − *.,

k−1∑

j=0
f (tj ,u

h
j )τ ,1

+/-
 ,

uh0 = πhu0.

The existence of uhi ∈ Vh , 1 6 i 6 n, follows form the theory of monotone operators.
We proved that, under appropriate conditions on the data, the approximation scheme satis�es
the following error estimates (1 6 j 6 n)

(i)
j∑

i=1




u (ti ) − uhi 


2 τ +
j∑

i=1




∇u (ti ) − ∇uhi 


2 τ 2 +








j∑

i=1

(
∇u (ti ) − ∇uhi

)
τ








2

6 C *,τ +
n∑

i=1
‖πhu (ti ) − u (ti )‖2H 1 (Ω) τ + ‖πhu0 − u0‖2+- ,

(ii)
������
j∑

i=1
(α (ti ) − αi ) τ

������
2

6 C *,τ +
n∑

i=1
‖πhu (ti ) − u (ti )‖2H 1 (Ω) τ + ‖πhu0 − u0‖2+- .
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Abstract

We investigate modelling and simulation of catalytic �uidized bed reactor producing
H2 andCO2 gaseous mixture as catalytic decomposition of liquid formic acid in presence
of solid catalyst. We derive, so called, Class II model of nonisothermal reactive mixture
�ow where we consider mixture of solid, liquid and gas distinguishing partial densities
and velocities sharing one common thermal �eld. The reactions undergo Arrhenius kin-
etics producing gaseous bubbles whose �ow in liquid/solid mixture is modelled as a �ow
in porous medium according to Darcy’s law. We present simulations of such a model
performed in COMSOL Multiphysics.

Key words: �uidized bed reactor, Class II mixture, Arrhenius kinetics, bubbly �ow

1 Motivation

Hydrogen is often described as the fuel of the future due to its high energy content and a
combustion pathway which produces only water as a by-product. However, conventional
storage methods are disadvantageous due to signi�cant energy requirements and inherent
safety risks associated with hydrogen kept under extreme pressure. We study a system where
hydrogen is stored chemically as formic acid, a non-hazardous liquid. In the presence of
certain metal catalysts the decarboxylation, i.e. endothermic reaction HCOOH → H2 +CO2,
occurs where hydrogen is produced on demand which can be directly used in fuel cells.

2 Introduction

The reactor is considered as �uidized bed reactor of liquid formic acid with microscopic solid
particles (diameter < 100µm) producing gaseous mixture of H2 and CO2. Physical model of
the �ow is kind of Class II model of nonisothermal reactive mixture. Here we distinguish
more levels of description since for very small solid particles its mixture with liquid can be
treated as a sol (colloid) and it can be su�ciently approximated as single non-Newtonian
pseudo-incompressible continuous phase. Similarly, the gas mixture of H2 and CO2 can be
without big loss of generality considered as single pseudo-compressible dispersed phase. The
�ow of continuous phase is mainly driven by thermal convection modelled by Boussinesq
approximation in�uenced by bubbly �ow of the gaseous product.
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3 Model

Denote ρc the density of continuous phase and let ud be its velocity. For ρd the density of
dispersed phase we introduce mixture density as ρ = Φcρ

mix
d + Φdρ

mix
d where Φd is volume

fraction of dispersed phase; Φc is volume fraction of continuous phase and the volume addit-
ivity holds, i.e. Φd + Φc = 1. We introduce the continuity equation for volume fraction

∂Φd

∂t
+ div(Φdud ) = − r

ρd
(1)

where r = Ãe−
Ea
RT is reaction rate modeled by Arrhenius law, for Ã being frequency factor, Ea

activation energy for the reaction,T temperature and R the universal gas constant. We model
a slip velocity uslip according to Darcy’s law or, so called, drag pressure balance

3
4
Cdρc
dd
|uslip |uslip = −ρ − ρd

ρ
∇p (2)

where dd is the bubble diameter and we specify the coe�cient Cd by convenient model due
to the �ow-regime and the size of the bubbles. In our case we can use common Hadamard
Rybczynski model for spherical bubbles or Haidler-Levenspiel model for nonspherical bubbles
where A,B,C,D are functions of the bubble-sphericity Sp and µ is viscousity of the mixture

Cd =
24

Rep
(1 +A(Sp )ReB (Sp )p ) +

C (Sp )

1 + D (Sp )/Rep
, Rep =

ddρc |uslip |
µ

.

Consequently, we de�ne mixture velocity asu = ud+ccuslip where cc =
Φc ρmix

d
ρ is concentration

of continuous phase and cd = 1 − cc = Φd ρmix
d

ρ . The momentum equations follows

ρ
∂u

∂t
+ ρ (u · ∇)u = divT + ρд + F − div

(
ρcdccu

2
slip

)
(3a)

T = −∇p + 2µD (3b)

(ρc − ρd ) div
(
Φdccuslip +

r

ρc

)
+ ρc divu = 0 (3c)

and denotingCp the heat capacity in constant pressure; k thermal coe�cient and Qr the heat
of the reactions we �nally close the model by heat equation for temperature T

ρCp
∂T

∂t
+ ρCpu · ∇T = div(k∇T ) +Qr . (4)

The simulations of such a model were performed in COMSOL Multiphysics and the results
will be shown during the presentation.
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Abstract

We review some of our recent works concerning shape and topology optimization of
structures. Their common feature is to rely on the level set algorithm. First, we discuss
geometrical constraints and more precisely thickness constraints. Second, we present a
linearized approach of worst-case design optimization in the presence of uncertainties.
Third, we introduce a new algorithm for shape and topology optimization which features
an exact mesh of the structure at each iteration of the optimization process.

Key words: level set method, shape optimization, topology optimization
MSC 2010: 49Q10, 74P15, 74P20

1 Introduction

Since its inception [4], [5], [8], [9], [10], the level set method in structural optimization has
gained an enormous popularity due to its versatility and the quality of the produced optimal
shapes which always have a clear and well-de�ned boundary. Nevertheless, there are still
progresses to be made and we report about three recent advances in this �eld. All examples
are computed for a model of linearized elasticity.

2 Thickness constraints

In [3], [7] we consider structural optimization problems for which geometric constraints are
imposed. More precisely we de�ne a notion of thickness, based on the signed distance func-
tion to the shape. We formulate three global constraints using integral functionals and geo-
metric notions as skeleton and o�set set: a maximal thickness, a minimal thickness and a min-
imum members’ distance. In the framework of Hadamard method we compute their shape
derivatives which allows us to implement them in a standard constrained optimization al-
gorithm. We discuss di�erent strategies and possible approximations to handle the geometric
constraints. As can be expected, the resulting optimized shapes are strongly dependent on the
initial guesses and on the speci�c treatment of the constraints since, in particular, some topo-
logical changes may be forbidden by those constraints. On Figure 1 an example of minimum
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thickness constraint is displayed for the classical test case of a force inverter (an horizontal
load is applied at the middle of the left side which should produce an inverse displacement on
the right side). The thin joints of the unconstrained optimal shape are thicken in the resulting
optimal shape when the minimum thickness constraint is applied.

(a) Without constraint (b) With a minimum thickness constraint

Figure 1: Force inverter (clamped at the two left corners).

3 Uncertainties and worst-case design

In [1], [6] we propose a deterministic method for optimizing a structure with respect to its
worst possible behavior in the case when some of its features (loads, material properties, geo-
metry) are plagued with “small” uncertainties. The main idea of the method is to linearize the
considered cost function with respect to the uncertain parameters (which are assumed small),
then to consider the supremum function of the obtained linear approximation, which can be
rewritten as a more “classical” function of the design, owing to standard adjoint techniques
from optimal control theory. The resulting linearized worst-case objective function turns out
to be the sum of the initial cost function and of a norm of an adjoint state function, which is
dual with respect to the considered norm over perturbations. This formal approach is very
general, and can be justi�ed in some special cases. In particular, it allows to address several
problems of considerable importance in both parametric and shape optimization of elastic
structures, in a uni�ed framework. In Figure 2 is displayed an example, the so-called mast
problem, for load uncertainties. There are given and known vertical loads at both ends of the
upper rectangle in the domain design. On top of them, unknown (small) vertical forces can be
applied anywhere in the shaded area on the lower side of this upper rectangle. The topology
of the worst-case design turns out to be more complex (and actually more stable) than that of
the original optimal design.

4 A level set based mesh evolution method

In [2], [6] we propose an approach to replace the standard “shape capturing” algorithm, based
on the level set method, on a �xed computational mesh by a “shape tracking” algorithm for
which the structure is exactly meshed at each iteration of the optimization process. The level
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Figure 2: Optimal mast with uncertainties in the loads.

set method is still a key tool but now it plays a direct role in the meshing algorithm. The
main ingredients of our method are two operators for switching from a meshed represent-
ation of a domain to an implicit one, and conversely. In particular, it requires an algorithm
for generating the signed distance function to an arbitrary discrete domain and a mesh gen-
eration algorithm for implicitly-de�ned geometries. Of course, the gain is a more accurate
mechanical analysis of the structure which is exactly meshed, a crucial feature for example
when evaluating a Von Mises criterion. Furthermore, our approach retains the ability of the
level set method to change the topology and to sustain large deformations of the structure.
This is illustrated on Figure 3.

(a) Initialization and two loads (b) Intermediate result (c) Final shape

Figure 3: Optimal chair for multiple loadings.
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Abstract

We present a novel �nite volume based approach to the numerical solution of gener-
alised Nernst-Planck-Poisson systems for ion transport in electrolytes.

Key words: Bikerman-Freise Model, Electrolytes, Finite Volume Methods, Nernst-Planck
equations
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Recent developments in electrochemical modeling have lead to an increased interest
in numerical simulations of electrolytic systems which are able to resolve the polarization
boundary layer. Classically, the problem is formulated based on the Nernst-Planck-Poisson
system for ion transport in a self-consistent electrical �eld.
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Figure 1: 500mV applied potential on ideally polarizable electrode in aqueous 1:1 aqueous electro-
lyte with mol/dm3 bulk ion concentration. Numerical results for the classical Guoy-Chapman model
(GC), the Guoy-Chapman-Stern model (GCS), the Bikerman-Freise model [3] (BF), the pressure cor-
rection model of [1] (PC), and the Fermi-Dirac model (FD). The physical limit of the concentration is
55.5mol/dm3.

Various model improvements are currently discussed in order to take into account the volume
constraint for solute concentrations, see e.g. [1]. Several of these approaches are compared
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in the talk. A reformulation of the problem avoids degenerating di�usion and cross-coupling
of gradients [2].
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Figure 2: Ternary electrolyte with settings similar to Fig. 1.

The talk reviews a successful �nite volume discretization strategy from semiconductor
analysis [4] and discusses its application in the context of electrolyte modeling. Special em-
phasis is made on the proper re�ection of qualitative properties of the physical model at the
discrete level [5] Along with calculation results for benchmark examples, the in�uence of
various model improvements is demonstrated.
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Abstract

In this work, we investigate to what extend pulse current operation in�uences the spe-
cies distribution in alkaline GDEs and determine parameters of possible pulse current
applications of zinc-air-batteries. For this purpose a 1D-model of a GDE, containing par-
tial di�erential equations for species concentrations and electrochemical equations, is
applied and solved numerically with the �nite-volume-method.
Key words: : 1D-model, alkaline gas di�usion electrode, FVM, PDE, pulse current

1 Introduction

Secondary zinc-air-batteries might be the upcoming alternative to state-of-the-art lithium-
based battery systems because of their higher theoretical energy density. However, dendrite
formation and shape change of the zinc-electrode are currently the main drawbacks.

One strategy to avoid dendrite formation is to charge/discharge the battery with pulse
currents [1]. However, pulse current response of the gas di�usion electrode (GDE) in zinc-
air-batteries, has not been investigated in detail. Since, GDE �ooding can signi�cantly lower
the overall performance of zinc-air-batteries due to blockage of transport paths for oxygen
[2], it is a necessity to further elucidate the oxygen distribution within the GDE.

In this work, we investigate the species distribution in alkaline GDEs and determine para-
meters for useful pulse current operation of zinc-air-batteries. For this purpose a 1D-model of
a GDE, containing partial di�erential equations for species concentrations and electrochem-
ical equations, is applied and solved numerically with the �nite-volume-method.

2 Model description

The GDE is composed of a gas-�lled gas di�usion layer (GDL) part, a liquid-�lled GDL part and
a catalyst layer (CL). Within the model, the coupling of reactant transport, electrochemical
reaction and electrode potential in liquid and solid phase is accounted for. The governing
equations are adapted from Wang et al. [3] and are as follows:

dη
dt = −

1
CCL
·
(
icell − z · F · r (t )

A

)
(1)

∂cO2

∂t
= De�

O2
· ∂

2cO2

∂x2
− 1
2 ·

r (t )

VCL
(2)

∂cOH−

∂t
= De�

OH− ·
∂2cOH−

∂x2
+ 2 · r (t )

VCL
(3)
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whereas r (t ) is the reaction rate of the electrochemical reaction. Equation (1) describes the
electrode over-potential, (2) represents the di�usion of oxygen and (3) the di�usion of hy-
droxide ions.

3 Results

Figure 1 shows one example of the simulations results for a 2 second pulse discharge at 100
mA/cm2 and 6 seconds recovery time at 0 mA/cm2. The set current is higher than the limiting
current for GDEs with passive oxygen supply via di�usion. However, the recovery time of
6 seconds allows the system and the oxygen concentration directly at the CL to recover and
the battery to withstand signi�cantly higher current densities. This illustrates that GDEs can
be applied in zinc-air-batteries operated with pulse current at a de�ned ratio of pulse current
and recovery. For real technical applications, where e.g. constant power operation is needed,
an equivalent amount of zinc-air-batteries is connected in series or parallel to compensate the
�uctuating electrode potential.
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Figure 1: Pulse operation for 2 seconds pulse time at 100 mA/cm2 discharge current and 6
seconds recovery time at 0 mA/cm2; pO2 = 0.21 atm, T=298 K, 6 M KOH as electrolyte.

References
[1] N. Shaigan, W. �, and T. Takeda. Morphology control of electrodeposited zinc from alkaline zincate

solutions for rechargeable zinc air batteries. ECS Transactions, 2010.

[2] D. Schröder, T. Arlt, U. Krewer, and I. Manke. Analyzing transport paths in the air electrode of a zinc
air battery using X-ray tomography. Electrochemistry Communications, 40:88–91, 2014.

[3] C. Y. Wang, W.B. Gu, and B.Y. Liaw. Micro-macroscopic coupled modeling of batteries and fuel cells: Part
1. model development. J. Electrochem. Soc, 145(10):3407–3417, 1998.

page 62 of 223 ISBN: 978-9-08223-090-1 ACOMEN©2014
[paper 28]



Book of abstracts of the 6th International Conference
on Advanced Computational Methods
in Engineering, ACOMEN 2014
23–28 June 2014.

E�cient time-integration for discontinuous Galerkin
time-domain calculations in nanophotonics

Jens Niegemann∗1

1 ETH Zurich, Institute of Electromagnetic Fields (IEF), 8092 Zurich, Switzerland

e-mails: jensn@ethz.ch

Abstract

The discontinuous Galerkin time-domain (DGTD) approach has gained considerable
attention as an e�cient and accurate method for the simulation of nanophotonic systems.
Its ability to combine explicit time integration with a higher-order spatial discretization
on unstructured meshes makes it a very attractive method for complex nanophotonic
structures. In order to match the accurate spatial discretization one also requires an
e�cient higher-order time integration method. In practice, explicit low-storage Runge-
Kutta (LSRK) schemes were shown to o�er an excellent compromise of accuracy, per-
formance and memory consumption. Here, we present new low-storage Runge-Kutta
methods of �fth order which signi�cantly improve both the e�ciency and the accuracy
of DGTD simulations of Maxwell’s equations.

Keywords: discontinuous Galerkin time-domain (DGTD), low-storage Runge-Kutta, time
integration

1 Introduction

When simulating nanophotonic systems with discontinuous Galerkin time-domain (DGTD)
method [1], an e�cient and accurate time integration procedure is required. A variety of
integrators are used in the literature, but probably the most common ones are either the leap-
frog method or Runge-Kutta schemes. The leap-frog method is very memory e�cient and
allows large timesteps but has limited accuracy. On the other hand, classical Runge-Kutta
schemes are known up to very high orders, but at the cost of an increased memory consump-
tion. Low-storage Runge-Kutta (LSRK) methods o�er a good compromise between accuracy
and memory consumption and therefore are particularly attractive for practical purposes.

2 Low-storage Runge-Kutta schemes

While there are several ways to implement low-storage variations of the Runge-Kutta method,
we focus on a formulation originally proposed by Williamson [2]. For a given number s of
stages, this method has a total of 2s − 1 independent coe�cients. For a su�ciently large
number of stages, it is possible to generate schemes which are of order p ≤ 4 and also o�er
large stability regions [3, 4]. However, to the best of our knowledge, so far there are no
schemes known in this formulation with orders p > 4.
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To �nd �fth-order schemes with optimized stability regions, we �rst generate optimal
stability coe�cients for up to s = 22 stages, following an approach presented in [5]. With
the stability coe�cients at hand, we then employ the nonlinear optimization package IPOPT

[6] to solve the nonlinear Runge-Kutta order conditions. As a result, we obtain coe�cients
for up to s = 22 stages which are accurate to �fth order. Moreover, for linear homogeneous
problems our schemes are seventh-order accurate. To the best of our knowledge, our schemes
are the �rst �fth-order low-storage Runge-Kutta schemes in Williamson formulation. They
allow highly accurate time integration without increasing memory requirements.
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Abstract

In this contribution we will introduce the reduced basis method and demonstrate its
performance for relevant, real-world metrology applications. Furthermore, we investig-
ate advanced model parameterization schemes for complex 3D geometry models based
on computer-aided design techniques.

Key words: CAD, computational metrology, FEM, nanophotonics, reduced basis method

1 Introduction

E�cient inverse lithography and computational metrology methods are becoming increas-
ingly important for the semiconductor industry [1, 2]. With component feature sizes in the
micro- and nanometer ranges these methods require solving nonlinear parameter identi�ca-
tion problems based on rigorous solutions of Maxwell’s equations.

The numerical costs required to solve such problems can easily be excessive for real-
world applications in which modeled light �eld data is typically required in almost real time.
Commonly, in such scenarious, solutions for parameters lying on a densely spaced parameter
grid are pre-computed in a so-called ’o�ine phase’. Subsequently, during a ’online phase’ (e.g.
when parameters need to be identi�ed based on measurements), a simple library search is per-
formed to identify the best �tting parameter values. Such approaches su�er from two major
drawbacks: Firstly, the number of pre-calculated solutions required increases exponentially
with increasing number of parameters (’curse of dimensionality’) and secondly, it is a priori
not clear how dense the parameter space needs to be sampled. Oversampling will largely
increase the ’o�ine phase’ computational costs, whereas undersampling will lead to inaccur-
ate or completely meaningless parameter estimates. In contrast, the reduced basis method
(RBM) is capable of building an accurate low-order model given a prede�ned approximation
accuracy facilitating low o�ine and online computational costs.
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2 Reduced basis method

Given a parameterized model, the RBM determines self adaptively where exact, so-called
snapshot solutions of the full problem are taken. These snapshot solutions form the reduced
basis and are used to construct a reduced model in the o�ine phase. The reduced model is
obtained by Galerkin projection, which could be characterized as physical interpolation: the
solution for a given point in the parameter space is not obtained by data interpolation, but by
solution of an electromagnetic scattering problem on the reduced basis space.

The reduced basis method is closely related to the �nite element method (FEM). The
snapshots included in the reduced basis are FEM solutions and the reduced model is a projec-
tion of the high dimensional �nite element discretization onto the low dimensional reduced
basis. Therefore, the reduced basis method inherits all of its unique features: exact model-
ing of complicated geometries with unstructured meshes, high-order ansatz functions, and
low computational times for highly accurate solutions. Furthermore, methods from the well-
developed area of a-posteriori error estimation of �nite element solutions can be applied to
the reduced basis setup. They are the key for self-adaptive algorithms which construct the
reduced basis approximation and guarantee reliability of the reduced basis results.

In this contribution we will introduce the reduced basis method and demonstrate its per-
formance for relevant, real-world metrology applications.

3 CAD based model parameterization

To date the RBM for Maxwell’s equations has only been employed on rather simple 2D or
3D model geometries. Finding appropriate means of de�ning shape parameterizations for
complex geometry models well suited for the RBM is subject of current research. Assuming
that a parametric shape is given in the form of a triangulated bounded domain, pertubations
of the shape parameters will lead to in�nitesimal movements of the mesh nodes that can be
described by a velocity �eld. To create an e�cient inverse design environment based on the
RBM, shape parameters need to be de�ned and related to the velocity �eld.

We investigate advanced model parameterization schemes within a history-based 3D geo-
metry modelling environment. Our approach facilitates shape derivatives to be estimated in
a fully automatic fashion for complex shapes constructed by the application of a sequence of
solid modeling algorithms (sweeping, blending, boolean operations and so forth) and solid
modi�cation algorithms (e.g. draft, �llet, chamfer) on parameterized primitive shapes.
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Abstract

In the present paper, the numerical determination of quasimodes (or quasi normal
modes or leaky modes) of open electromagnetic structures is presented. The method is
based on a �nite element formulation completed with Perfectly Matched Layers (PMLs).
These PMLs lead to non Hermitian matrices whose complex eigenvalues correspond to
quasimode frequencies. Using Floquet-Bloch theory, a numerical model is set up that
allows the spectral study of structures that are both open and periodic (e .д. di�raction
gratings). With this model, we show that it is possible to use a periodic structure of dis-
connected elements (e .д. a line of rods) to guide electromagnetic waves, in the direction
of the periodicity, on signi�cant distances with very limited losses. Such structures
would be more convenient to build than usual waveguides in the realm of nanophoton-
ics.

Key words: quasimodes, PML, �nite elements, waveguides, nanophotonics.

1 Quasimodes and discontinuous waveguides

Nowadays, the Finite Element (FE) method is an e�ective method to compute the behaviour
of electromagnetic waves in photonic devices. It provides a tool that is extremely versatile
and accurate at a reasonable computational cost. An important progress has been made by the
introduction of Perfectly Matched Layers (PMLs) that are used for the re�ectionless truncation
of in�nite domains. Using the PMLs, the spectral analysis of open electromagnetic structures
(computing the eigenvalues of the FE matrices) gives very interesting information about their
behaviour [1]. Open structures have to be analysed in terms of quasimodes (associated to
complex frequencies) and the PMLs are crucial specially for the correct computation of the
imaginary parts of the frequencies associated to losses and leakages. The role of the PMLs
is to rotate the continuous spectrum in the complex plane in order to unveil the quasimodes
(by providing a non-Hermitian extension of the operator associated to the initial problem).
A practical way to design such PMLs is to consider Transformation Optics: PMLs may be
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obtained by applying a complex-valued stretch to the coordinates and then computing the
resulting equivalent materials[2].

Using Floquet-Bloch theory, a numerical model is set up that allows the spectral study of
structures that are both open and periodic (e .д. di�raction gratings). In this paper, we con-
sider periodic waveguides with waves travelling in the direction of the periodicity. With this
model, we show that it is possible to use a periodic structure of disconnected elements (e .д.
a chain of rods) to guide electromagnetic waves on signi�cant distances with very limited
losses. In a �rst step, the leaky mode dispersion diagram of a periodic structures is computed
(involving one single elementary cell with PMLs for open directions and Floquet-Bloch con-
ditions associated to a propagation constant for the periodic direction): given a propagation
constant, some corresponding complex frequencies ω = ω ′ + iω ′′ are computed. In a second
step, a frequency with a very small imaginary part is selected and the guiding proprerty is
checked using a �nite chain of repeated elementary cells fed by a simple antenna.

We are particularly interested in the case where the structure if made of identical ele-
ments embedded in a bulk with some gap between them and we will call such a structure
a discontinuous waveguide. As an example, we take chains of in�nite cylinders with circular
cross sections in order to keep the problem two-dimensional. Fig. 1 shows a realisation of such
a waveguide: distance between centers of circular rods d = 500nm, radius of rods r = d/3,
permittivity of rods εr = 4. Fig. 1(a) shows a branch of the dispersion diagram (frequency ω ′
versus propagation constant α ) with the corresponding losses (− log(ω ′′/ω ′) on the vertical
axis), the higher peaks corresponding to the lower losses. The third peak from the left is se-
lected (ω ′ = 1.117 1015 rad/s, ω ′′ = 6.908 108 rad/s, ω ′′/ω ′ = 6.184 10−7). It corresponds to a
free space wavelength λ = 1686.18nm and the source is a monopole fed at the corresponding
frequency and located at 853nm from the edge of the �rst rod. Fig. 1(b) shows a wave guided
in a 21-rod structure.
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(a) Dispersion diagram with losses. (b) Wave guided with a �nite chain of cells.

Figure 1: Guiding of an electromagnetic wave in a chain of circular rods.
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Abstract

Classical �nite element methods rely on tessellations composed of straight-edged ele-
ments mapped linearly from a reference element, on domains which physical boundaries
are indi�erently straight or curved. This approximation represents serious hindrance for
high-order methods, since they limit the precision of the spatial discretization to second
order. Thus, exploiting an enhanced representation of the physical geometry of a con-
sidered problem is in agreement with the natural procedure of high-order methods, such
as the discontinuous Galerkin method. In the latter framework, we propose and validate
an implementation of a high-order mapping for tetrahedra, and then focus on speci�c
nanophotonics setups to assess the gains of the method in terms of memory and per-
formances.

Key words: Discontinuous Galerkin, curvilinear elements, Maxwell equations, nano-
photonics

1 Curvilinear DGTD formulation

Classical discontinuous Galerkin time-domain (DGTD) methods rely on a linear mapping
from a straight-edged reference element to each physical element of the mesh to evaluate
the expressions of the �nite-element matrices : this allows to save a lot in terms of compu-
tational e�ciency and memory consumption. Indeed, in the linear case, the �nite element
matrices for the physical elements are simply multiples of the precalculated matrices of the
reference element, since the Jacobian of the corresponding transformation is a constant. In a
curvilinear setting, the reference element is mapped to the physical element via a quadratic
form, thus allowing a quadratic representation of boundaries. Therefore, the Jacobian of this
transformation is no longer a constant, and the matrices have to be evaluated by means of
numerical integration, and stored for each physical curved tetrahedron. E�cient quadrature
and cubature rules can be easily found up to su�cient order to our purposes.

A DGTD scheme accouting for curved elements was formulated and implemented in the
framework of Maxwell’s equations, using centered numerical �uxes. A validation step was
conducted to verify the stability and accuracy of the method. Realistic situations related to the
nanophotonics �eld will then be considered that demonstrate the potential of the approach,
such as realistically-rounded metallic nanocubes described by a multipole dispersive model.
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2 Validation

A spherical cavity of unit radius is considered, with PEC boundary conditions. A (0,1,1) mode
is propagated inside it, which exact solution is known. Four di�erent rectilinear meshes of
increasing re�nement were generated in order to check for h-convergence. P1 to P4 polyno-
mial approximations were used. For each simulation, the L2 error is calculated over the whole
mesh, and the maximum error levels is retained. The obtained h-convergence results are dis-
played on table 1. As can be seen, the use of curvilinear tetrahedra restores quasi-optimal
rates. Moreover, it allows to save a lot in terms of degrees of freedom, and therefore in CPU
time. Indeed, the curvilinear M1 solution is three times faster and occupies three times less
memory than the linear M2 solution, for a roughly similar error level. As an example, the P2
numerical solution on the M1 and M2 meshes are displayed on �gure 2.

Table 1: Convergence rates of the spherical cavity case.
M1 M2 M3 M4

Rect. Curv. Rect. Curv. Rect. Curv. Rect. Curv.

P1 – – 1.62 – 1.25 – 1.16 –

P2 – – 1.83 2.85 1.70 2.32 1.58 2.28

P3 – – 1.75 3.84 1.66 3.53 1.55 3.41

P4 – – 1.78 3.79 1.68 3.73 1.57 3.57

(a) Linear mesh (b) Quadratic mesh

Figure 1: P2 numerical solution for the Ex �eld.
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Abstract

Many problems in the physical sciences require the determination of an unknown �eld
from a �nite set of indirect measurements. Examples include oceanography, oil recovery, wa-
ter resource management and weather forecasting. The Bayesian approach to these problems
is natural for many reasons, including the under-determined and ill-posed nature of the in-
version, the noise in the data and the uncertainty in the di�erential equation models used to
describe complex multiscale physics. The object of interest in the Bayesian approach is the
posterior probability measure on the unknown �eld, given the data.

However the Bayesian approach presents a computationally formidable task as it results
in the need to probe a probability measure on function space. The talk will describe three
computational methods for this task, and their inter-relations. The �rst method is based on
approximating the probability measure by a Dirac measure and computing the MAP estimator
(maximum a posteriori estimator) for the point at which the measure is centered. It will be
shown how to make sense of this idea in in�nite dimensions, resulting in a problem from
the calculus of variations [1]. The second method is based on approximation of the posterior
measure by a Gaussian, looking for the closest Gaussian with respect to the Kullback-Leibler
divergence. Again we show how to make sense of this in in�nite dimensions, and again
formulate the resulting problem in the calculus of variations [2]. The third method is to
sample the posterior measure by means of MCMC methods, using the algorithmic approach
described in [3], resulting in algorithms with rates of convergence which are independent of
the mesh. Furthermore we show that use of the best Gaussian approximation from [2] within
the MCMC method can lead to further bene�cial computational speed-up.
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Abstract

We present an overview of the application of the Finite Di�erence Time Domain
(FDTD) and the Discontinuous Galerkin Time Domain (DGTD) electromagnetic simula-
tion methods to several particular nanophotonic systems. We discuss the extension of the
original methods with an emphasis on nonlinear, nonlocal and hydrodynamic material
descriptions based on microscopic physical models.

Introduction Many natural materials exhibit an intensity dependence of their optical prop-
erties, i.e. a nonlinear optical behaviour. In the non-perturbative regime, i.e. beyond low
intensities or for ultrafast/broadband excitation, time domain methods allow an immediate
numerical treatment of the di�erential equations usually resulting from a physical model-
ling. However, these additional di�erential equations often introduce new requirements for
a stable numerical evaluation even if the elecromagnetic coupling is simpli�ed or completely
neglected.

Semiconductormaterials An important non-perturbative nonlinear material model is the
quantum mechanical two-level system described by the Optical Bloch Equations, representing
e.g. atoms, solid state quantum dots or other quantum oscillators. Even without electromag-
netic backaction, for ultrafast optical excitation the numerical evaluation of these equations
tend to become unstable with feasible time steps unless a higher order method is used. We
show how the 4th order Runge Kutta integration technique (RK4) can be combined with the
the FDTD method in the regions where nonlinear material exists, without the requirement
to change the e�cient FDTD central di�erences Yee update scheme anywhere else. For the
intermediate values required by the multistep RK4 scheme, we compare di�erent approaches
like n-th order Lagrange extrapolation and a predictor scheme locally consistent with the
FDTD update operation [1]. We show that signi�cant numerical errors only occur for 0th
(constant) and 1st (linear) order Lagrange schemes.

Quantum mechanical models are intrinisically nonlocal as the wave function extends
in space. This becomes relevant for larger coherent objects like quantum dots consisting
of many atoms. We show that despite being smaller than the wavelength, �eld variations
within the quantum dot occur. Further challenges for simulations are discussed, e.g. the
di�erent scales if a 30nm quantum dot is embedded in a 10000nm photonic crystal structure
with a high-Q cavity, or if higher-dimensional semiconductors like quantum wells exhibiting
a non-Lorentzian broadband response are present.

page 73 of 223 ISBN: 978-9-08223-090-1 ACOMEN©2014
[paper 34]



~10µm	
  

~30nm	
  

Figure 1: Simulated �eld pattern (left) and emission spectrum (right) of a quantum dot em-
bedded in a 3d photonic crystal cavity (FDTD method).

Nonlinear metals Equally challenging is the physical modelling of metals beyond their
linear properties. This is possible using a semiclassical hydrodynamical model which however
tends to be highly surface sensitive and exhibits shock waves. Both is numerically di�cult to
handle, but recently a combination of the Discontinuous Garlerkin Time Domain method that
allows local mesh re�nement arround the interface regions with nonlinear �lter techniques
has lead to a successful description of the nonlinear optical properties like higher harmonic
generation by arrays of metallic nanoparticles [2, 3].

THG 

SHG 

Figure 2: Schematics (left) and calculated emission spectrum (right) showing second and third
harmonic generation of a gold split ring resonator array (DGTD method).

Using the DGTD method we were also able to simulate the optical response of a complex
bi-chiral interweaved metallic helix structure with tiny structural features but a large total
extension [4]. While being very versatile and powerful the Achilles heel of DGTD currently
is the mesh generation, as it is slow and most available mesh generation libraries only produce
meshes optimized for frequency space methods like the FEM having di�erent requirements.
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Abstract

Starting from standard explicit Runge-Kutta (RK) methods, we propose high order ex-
plicit local time-stepping (LTS) methods for the simulation of electromagnetic wave phe-
nomena. By using smaller time steps precisely where smaller elements in the mesh are
located, these LTS methods overcome the bottleneck in explicit time integration caused
by local mesh re�nement, without sacri�cing the explicitness, accuracy or e�ciency of
the original RK method.

Key words: Maxwell equations, high-order explicit time integration, local time-stepping,
multirate methods

1 Introduction

We discretize the time-dependent Maxwell equations in space by using standard edge �nite
elements (FE) with mass lumping or a discontinuous Galerkin (DG) FE discretization, while
leaving time continuous. Either discretization leads to a system of ordinary di�erential equa-
tions

y′(t ) = By(t ) + F(t ), (1)

where the matrix B involves the inverse, M−1, of the mass matrix M. Since M is essentially
diagonal, its inverse is explicitely known, and so is B.

Standard explicit numerical methods for the time integration of (1) include explicit Runge-
Kutta (RK) schemes and Adams-Bashforth (AB) methods, whose time-step, ∆t , is dictated by
the smallest elements in the mesh. In [1, 3, 4] multi-step based LTS methods were proposed,
which alleviate that geometry induced stability restriction by using smaller time-steps, but
only where the smallest elements in the mesh are located.

2 Runge-Kutta based LTS

Here we present explicit LTS methods of arbitrarily high accuracy based either on explicit
classical or low-storage RK schemes [2]. In contrast to AB methods, RK methods are one-step

page 75 of 223 ISBN: 978-9-08223-090-1 ACOMEN©2014
[paper 35]



(a) Zoom on the re�ned mesh (b) The solution at time t =0.7.

Figure 1: A gaussian plane wave impinging upon a narrow gap.

methods; hence, they do not require a starting procedure and easily accommodate adaptivity
in time. Starting from (1), we �rst split the vectors y and F as

y(t ) = (I − P)y(t ) + Py(t ) = y[c] (t ) + y[f] (t ),

F(t ) = (I − P)F(t ) + PF(t ) = F[c] (t ) + F[f] (t ).
(2)

Here the entries of the diagonal matrix P, equal to zero or one, identify the unknowns asso-
ciated with the locally re�ned regions, y[f]. Hence the exact solution of (1) is

y(tn + ξ∆t ) = y(tn ) +
∫ tn+ξ∆t

tn
By[c] (t ) + F[c] (t ) dt +

∫ tn+ξ∆t

tn
By[f] (t ) + F[f] (t ) dt . (3)

To derive an LTS method, we now approximate the �rst integral in (3) by a su�ciently
accurate quadrature formula, where the (unknown) values of y[c] at the quadrature points are
approximated by Taylor expansion. Di�erentiation of the resulting expression then leads to
a modi�ed di�erential equation, which is solved numerically from tn to tn +∆t by using a RK
method with local time-step ∆τ = ∆t/p; here, p denotes the coarse to �ne aspect ratio. The
resulting LTS-RK scheme has the same high rate of convergence as the original corresponding
RK method.

In Fig. 1(b), we observe a time dependent wave impinging upon a narrow gap between
to rectangular obstacles. During every time-step, ∆t , the LTS-RK method takes p = 7 local
steps of size ∆τ = ∆t/p inside the re�ned region, shown in Fig. 1(a).
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Abstract

A transient �nite di�erences algorithm is used for the simulation of active optical cav-
ities. Rotationally symmetric structures are treated using a 2.5-dimensional ρz-approach
where the non-linearity of the gain material leads to a coupling of the azimuthal modes.
Due to the complexity of the overall simulation process a thorough validation is required.
An academic example is presented which is suited for such a validation, and a simulation
of a sample VCSEL structure gives an outlook on the potential of such simulations.

Key words: laser simulation, FDTD, cylindrical mesh.

1 Introduction

The dynamics of active optical components such as lasing microcavities are simulated on the
ultrafast timescale. The simulation approach is based on the Finite Integration Technique
(FIT [1]) and the leapfrog time integration method, and thus closely related to corresponding
Finite Di�erence Time Domain (FDTD) schemes. In order to cope for the highly nonlinear
interplay between light and matter an extended material model for the active regions is used.
Based on a two-level quantum mechanic ensemble, it can macroscopically be described by a
rate equation and a Lorentz oscillator model for the polarization (e.g. [2]).

For structures with cylindrical symmetry a so-called 2.5-dimensional implementation is
used. Based on a 2D computational mesh in ρz-coordinates, the �elds are decomposed into
azimuthal modes which – in the classical linear case – are treated separately. The active
material, however, leads to a coupling between these modes, and they have to be integrated
in time simultaneously. Nevertheless, due to the considerably reduced number of degrees of
freedom in the two-dimensional mesh the overall numerical e�ort is within reasonable limits.
The details of the method can be found in [3, 4], and an application example will be presented
in the presentation.

The standard FIT procedure has been validated many times as a reliable and accurate tool
for electromagnetic simulations. With the additional non-linear PDEs the situation becomes
more complex, and some additional modeling assumptions have to be assessed. This includes
the physical model itself (validity of the macroscopic non-linear description), numerical ques-
tions like the number of considered azimuthal modes, as well as implementation issues such
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as the allocation of the additional quantity in the mesh. For a thorough validation of the over-
all simulation tool, however, it is not easy to �nd suitable benchmark problems with reference
solutions.

2 Validation Example

The setup consists of a circular hollow waveguide with absorbing boundary conditions at
both longitudinal terminations and a 30nm layer (one mesh step) of a non-linear material.
The transversal �eld pattern of the TE11 waveguide mode is impressed on both sides of this
layer, ensuring a longitudinally homogeneous �eld inside. For this case an analytical solution
is available (see [4] and the references therein).

Figure 1: Validation setup: Rabi oscillation in a cylindrical waveguide.

The simulation results nicely reproduce the Rabi-type oscillation of the inversion density.
Futheron, the setup allows to analyze the impact of several physical and simulation paramet-
ers such as the in�uence of the exciting �eld strength, the transversal mesh resolution and the
number of considered azimuthal modes. There are small deviations to the reference solution
which can be fully explained by the corresponding modeling steps.

The calculated signals further include all additionally generated spectral components as
expected.
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Abstract

Discontinuous Galerkin methods represent powerful approaches for computing the
optical properties of nano-structured systems. Corresponding time-domain simulations
for plasmonic systems require material models that are amenable to auxiliary di�erential
equation techniques. In this work, suitable models for the magneto-optic properties of
transition metals as well as for the nonlocal and nonlinear properties of ordinary metals
are described and a number of the resulting e�ects and phenomena are investigated.

Key words: Plasmonics, Magneto-Optics, Discontinous Galerkin methods

1 Introduction

Over the past years, nodal Discontinous Galerkin Time-Domain (DGTD) approaches for the
Maxwell equations [1, 2, 3, 4] have been advanced su�ciently far so as to facilitate real-world
applications in several disciplines. This success stems from the combination of �nite-element
based high-order spatial discretization techniques on unstructured grids with very e�cient
explicit time-stepping schemes of comparable order.
For applications in nano-photonics it is highly desirable to model the complex behavior of a
number of materials. Quite generally, this may include temporal and/or spatial dispersion as
well as anisotropic and/or nonlinear material characteristics. Owing to the speci�cs of the
DGTD approaches, notably the numerical �ux that connects adjacent �nite elements, it is
typically preferred to include such complex material properties into the DGTD framework by
way of auxiliary di�erential equation formulations.
Nano-structures containing metallic constituents, so-called plasmonic systems, represent a
particular important class of structures where basically all the above material characteristics
may play an important role.

2 Magneto-Plasmonics

The linear properties of traditional plasmonic materials such as aluminum, gold, or silver can
be very well described through a Drude model combined with several Lorentz-poles. How-
ever, for transition metals this is not anymore the case. The strong electronic correlations in

page 79 of 223 ISBN: 978-9-08223-090-1 ACOMEN©2014
[paper 37]



these metals lead to an asymptotic ω−1 behavior of the imaginary part of the dielectric con-
stant that is di�erent from the ω−3 behavior of Drude-Lorentz models. In turn, this suggests
that the Drude model has to be modi�ed in order to accommodate the retarded response of
the free electrons that experience these strong correlations [5].

Figure 1: Polar magneto-optical Kerr rotation from a
hexagonal anti-dot array within a 100 nm thick nickel
�lm that is deposited on an unstructured silicon sub-
strate. The corresponding unit cell (see inset) is a regular
hexagon with an edge length of 271.4 nm (corresponding
to a lattice constant of 470 nm) with a cylindrical pore
with radius 137.5 nm at the center. The experimental
data are taken from [6] while the simulations for di�erent
incident polarizations (see inset) have been carried with
the DGTD method using an anisotropic modi�ed Drude
+ Lorentz model (see [5] for details).

In addition, this modi�ed Drude model
can be extended to account for the free elec-
trons’ response to an applied static mag-
netic �eld by incorporating the correspond-
ing magnetic part of the Lorentz force [5]. A
similar anisotropic extension can be applied
to any number of Lorentz poles as well.
The resulting anisotropic modi�ed Drude +
Lorentz model allows to treat the magneto-
optic properties of nano-structured trans-
ition metal systems. In Fig. 1, the results of
corresponding computations are compared
with measurements of the magneto-optical
Kerr rotation on a hexagonal array of pores
in a nickel �lm [6].

3 Hydrodynamic model of
conduction electrons

A description of the free electrons within a
metal as a plasma in con�ned geometry that is driven by the full Lorentz force constitutes a
natural extension of the linear and (spatially) local Drude model to account for the metal’s
nonlocal and nonlinear properties. The de�ning feature of this model is the existence of bulk
plasmon excitations that are are ignored in the standard Drude model that employs a constant
electron density. For typical metals, these bulk plasmons have a natural wavelength of a few
nanometers. In turn, this leads to stringent requirements on the spatial resolution that has
to be employed for obtaining converged results. In particular, this applies to the resonance
frequencies and �eld enhancements in typical nano-gap structures.
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Abstract

An e�cient solver for the 2D unsteady Navier-Stokes equations is presented. We used
a classic time stepping scheme combined with an high order predictor-corrector solver.
This method combines an homotopy technique and the asymptotic numerical method
(ANM). The main purpose is to gain CPU time during computations. The technique
presented here reduces the number of factorization of the operators. A pseudo-residual
criterion prevents the asymptotic numerical method to use more right hand side vectors
than needed for a given accuracy. This speci�c technique is compared to the classical
�rst order Newton-Raphson solver. We show that a signi�cant number of factorization
are avoided, keeping at the same time a good quality of the solution.

Key words: unsteady Navier-Stokes, perturbation method, homotopy technique
MSC 2010: 76D05, 76M10, 74H10

1 Method and results

The Navier-Stokes equations are written in a discrete form as :

MU̇ + L(U) + Q(U,U) = F (1)

where U is a mixed unknown time dependent vector (i.e. U = {u,p}). The operators M, L
and Q are respectively the mass matrix, the pressure and the di�usion terms and a quadratic
operator with the convective term. To solve Eq.(1) we transformed it by applying a θ -scheme,
and using an homotopy technique as in [1]:[ 1

θ∆t
M + LUs

t

]
Vt+1 + ε Q (Vt+1,Vt+1) = Fv +

1
θ∆t

M
(
Vt + V̇t (1 − θ )∆t

)
(2)

where ε ∈ [0,1] is a perturbation parameter. This latter permits to continuously transform
the problem from a linear one with ε = 0 to the initial one when ε = 1. Finally Eq.(2) is
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solved using the asymptotic numerical method. The unknown Vt+1 is sought as a polynomial
approximation of order N :

Ut+1 = Us + Vt+1 ≈ Us +

N∑

i=0
εiW(i )

t+1 (3)

The starting point Us can be either a stationary solution [2], or a transient solution. The non-
linear system is now a set of linear systems with the same tangent operator at each order:

[ 1
θ∆t

M + LUs
t

]
W(k )

t+1 = −
k−1∑

i=0
Q

(
W(i )

t+1,W
(k−1−i )
t+1

)
, with 1 ≤ k ≤ N (4)

Once the serie {W}t+1 is computed and if the solution is still valid (i.e. ε ≥ 1), then a new
time step is computed using the previous operators. Otherwise, new operators have to be
factorized. During a time step, we proposed to check the validity of the solution at each
order of Eq.(4) via a pseudo residual criterion. This latter allows monitoring the quality of the
solution with no additional computations, and avoid a great number of useless orders.

Numerical results are obtained studying the �ow around a cylinder. The �ow is periodic
in time for a Reynolds number greater than 50. Calculations start from a steady solution and
reach a limit cycle (Fig.1). The classical 1st order solver leads to 6442 factorizations for a

Figure 1: Vertical velocity behind the cylinder with ∆t = 10−2, θ = 0.6
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required accuracy η = 10−5. We compare this number with an equivalent number of factoriz-
ation obtained with our proposed method (Tab.1). It shows a CPU gain with a good accuracy
of the computed solutions.

η #Fact. #RHS CPU / Fact. CPU CPU gain
1e-6 53 286.8 19
1e-5 1 421.3 15
1e-4 1 254.2 25

Table 1: CPU gain for 3 required accuracy η.
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Abstract

We investigate the well-posedness for an inverse problem of determining a space-
wise dependent source in a hyperbolic Dirichlet problem with a memory term. The ma-
terial coe�cients appearing in the governing equations may depend both on space and
time. The aim is to identify a space-wise dependent source from the usual initial and
boundary conditions and the �nal-time over-determination.

1 Introduction

Inverse coe�cient and source problems for partial di�erential equations represent a well-
known and established area of mathematical research in the last decades. They appear in
various applied technologies (geophysics, optic, tomography, remote sensing, radar-location,
etc.). Inverse source problems for hyperbolic settings have been intensively studied by many
authors, e.g. [1–7].

We consider the following inverse problem (IP) with unknown functions u and f (the
other data functions appearing in the problem setting are known and bounded in appropriate
spaces)

ut t (t ) + д(ut (t )) − ∇ · (a(t )∇u (t )) + c (t )u (t ) + (K ∗ u) (t ) = f + F (t ), (1)
where

(K ∗ u) (t ) =
∫ t

0
K (t − s )u (s ) ds .

This paper is devoted to the identi�cation of a spatially distributed source f = f (x ) from a
given �nal-time over-determination

u (x ,T ) = ψT (x ) for x ∈ Ω, (2)

where Ω is a bounded domain of Rn , where n ≥ 1, with Lipschitz boundary Γ. The solution u
obeys the following boundary and initial conditions

u (x ,0) = h0 (x ) for x ∈ Ω
ut (x ,0) = h1 (x ) for x ∈ Ω
u |Γ = 0 for t ∈ (0,T ).

(3)

Nonlinear term is modelled by a monotonically increasing function д and memory is repres-
ented by the smooth time-convolution kernel K .
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Abstract

A new modeling technique for Large-Eddy Simulation is presented, in which the
residual-stress tensor is reconstructed by applying an optimal convolution operator to
the resolved stresses. This convolution operator is de�ned as a Taylor-series expansion
in which the coe�cients are determined using a dynamic procedure. The method is eval-
uated for the 1D Burger’s equation as proof of concept. Promising results are obtained.

Key words: Residual Stress Reconstruction, Optimal LES model, Large-Eddy Simulation,
Turbulent �ows.

1 Context

In Large-Eddy Simulation (LES) of turbulent �ows, one may distinguish two categories of re-
sidual stress modeling for the e�ect of the unresolved turbulent scale-interactions onto the
resolved �ow[1]. First, functional models rely on the existence of a physical energy cascade
in which the energy of largest resolved turbulent structures is transferred to subsequently
smaller scales before it is dissipated at the �lter cuto�. Traditional models, such as Smagor-
insky’s model, assume an eddy-viscosity representation which implies that the e�ect of the
unresolved interactions is mainly dissipative and can be modeled through a turbulent shear-
thickening eddy-viscosity νe in combination with a Laplacian operator, in analogy with the
dissipative e�ect molecular di�usion. These popular and widely used models are limited
by the Laplacian dissipator, which is known for its inaccurate di�erentiation of dissipation
throughout the spectrum of turbulent scales. Indeed, the largest and medium resolved scales
are often excessively damped whereas the cusped behaviour of the dissipation near the �lter
cuto� is insu�cient. More advanced functional models attempt to remedy this de�ciency by
using high-order dissipative operators, either as an explicit source term, or implicitly as a dis-
sipative discretization scheme. In contrast to functional models, structural models reconstruct
the residual stress tensor by means of a deconvolution procedure of the resolved velocity �eld
or a scale-similarity approach using a double-�ltered velocity �eld. Structural models rely on
mathematical series expansions assuming scale-similarity within the spectrum of turbulent
scales. Although structural models, in general, give a good correlation with the true residual
stresses, not seldomly a secondary arti�cial dissipation mechanism must be included because
they do not guarantee absolute dissipation at all times. In the following, a new methodology
for reconstructing the residual stress tensor is presented.
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2 Residual Stress Reconstruction

The equations for Large-Eddy Simulation for homogeneous isotropic turbulence are obtained
by applying the Fourier cuto� �lter H (x,κc ), to the Navier-Stokes equations. The Fourier
�lter allows to resolve all Fourier modes exactly up to the cuto� wavenumber κc , whereas all
modes above the cuto� are entirely removed. The �ltered momentum equations read

∂ui
∂t
+
∂uiu j

∂x j
+
∂τ i j

∂x j
= − ∂p

∂xi
+ ν
∂2ui

∂x2j
, (1)

where u (x,t ) and p (x,t ) denote the �ltered velocity �eld and pressure �eld and τ i j = uiuj −
uiu j denotes the residual-stress tensor, representing the e�ect of the unresolved turbulent
interactions.
We propose to reconstruct the positive and negative contributions of the residual stress tensor
τ i j = τ

+
i j + τ

−
i j by the convolution operation

τ±i j = uiu j
± − Gi j

(
x1,γ

) ∗ Gi j
(
x2,γ

) ∗ Gi j
(
x3,γ

) ∗ uiu j±. (2)

in which the �uxesuiu j are split into positive and negative parts using a global Lax-Friederich
method. This is similar to implicit LES methods, and guarantees global dissipation at all times.
Then, we de�ne the convolution kernel in the Cartesian direction xm as the power series
expansion

Gi j
(
xm ,γ

)
= I +

∞∑

k=1
γk,m∆k

m
∂k

∂xkm
= I +

∞∑

k=1
γ2k,m∆2k ∂

2k

∂x2km︸                       ︷︷                       ︸
Dispersion

+

∞∑

k=0
γ2k+1,m∆2k+1

m
∂2k+1

∂x2k+1m︸                         ︷︷                         ︸
Dissipation

. (3)

Working out expression (2), using Leibniz’ rule, �nally yields

τ±i j = uiu j
± −

∞∑

k,l,m,q,r ,s=0
αk,l,m,q,r ,s∆

k+l+m+q+r+s ∂
k+l+mu ′i

∂xk1 ∂x
l
2∂x

m
3

∂q+r+su ′j
∂x

q
1 ∂x

r
2∂x

s
3
. (4)

By means of this series expansion of τ±i j , it is straightforward to observe the analogies with
both structural and functional models, including Smagorinsky’s model, hyperviscosity mod-
els, the tensor di�usivity model and even implicit LES. As indicated in (3), the odd terms in
the convolution kernel provide dissipation in equation (1), conform the physics of the energy
cascade, whereas the even terms lead to dispersion and thus accounting for the phase shift due
to unresolved interactions. The crucial part of the residual stress reconstruction method is to
determine the parameters γk,m such that the resulting one-dimensional convolution operat-
ors provides an adequate amount of dissipation and dispersion in the corresponding Cartesian
direction. For a �nite number of terms in the series expansion, the parameters γk,m are de-
termined in a least-square sense by means of a dynamic procedure, leading to an optimal
convolution operator based on scale-similarity assumptions.
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Abstract

A class of a posteriori error estimates for solutions in the Cosserat elasticity theory is
investigated. Using the so-called functional approach, theoretical and numerical results
for plane problems are provided. Numerical justi�cation of the approach is based on the
implementation of the lowest order Arnold-Bo�-Falk approximation.

Key words: a posteriori error estimates, Cosserat elasticity, mixed approximations

1 Introduction

Cosserat continuum [2] is one of important generalizations of the classical elasticity theory.
Such type of models takes into account an advanced spectrum of material properties and can
more adequately describe materials with microstructure. For complete historical review of the
subject, see, for instance, [3, 6] and the literature cited therein. The implemented approach to
accuracy veri�cation is based on functional grounds [7, 5]. A posteriori error estimates are
reliable under quite general assumptions and are explicitly applicable not only to approxim-
ations possessing the Galerkin orthogonality property.

In contrast to the classical statement in linear elasticity with only displacements u =
(ux ,uy ) regarded as primary unknowns, Cosserat elasticity involves the microrotation ωz as
one additional independent degree of freedom. For any given approximate solution (ũ,ω̃z )
from the respective functional space, the deviation (error) is introduced as

ξx := ux − ũx , ξy := uy − ũy , ξz := ωz − ω̃z

and the following a posteriori error estimate for the energy norm can be obtained:

|||(ξx ,ξy ,ξz ) |||2 ≤ (1 + β )D2 (τ̃1, τ̃2, s̃ ) + (1 + β−1)C2R2 (τ̃1, τ̃2, s̃ ), ∀β > 0, (1)

where D2 represents the error in the constitutive relations, R2 is a weighted sum of norms
of residuals in the equilibrium equations for Cosserat continuum,C – is a mesh-independent
constant, and (τ̃1, τ̃2, s̃ ) – is a triple of additional variables. This theoretical result general-
izes the previous one obtained in [8]. The proof of the reliability of the class of estimates is
provided in [4]. Additional variables have clear physical meaning – τ̃ = (τ̃1, τ̃2) represents
the true nonsymmetric stress tensor and s̃ is an independent approximation of the non-zero
components of the couple-stress tensor.
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2 Numerical results

To implement the error estimate (1) one can use a suitable mixed �nite element for vector-
valued �elds. In this research, the element proposed in [1] is used. The respective space for
it has the formABF 0 (K̂ ) = P2,0 (K̂ ) × P0,2 (K̂ ), where Pi,j (K̂ ) — the space of polynomials
over K̂ of power i or less on x̂1 and j — on x̂2 for the reference square K̂ = (−1,1) × (−1,1),
where x̂1 and x̂2 are local coordinates of the reference element. Results for one example of ten-

Table 1: Results of estimation by (1).
Quantity Mesh 1 Mesh 2 Mesh 3 Mesh 4 Ref. mesh

DOF 336 1248 4800 18816 296448
% 11.5 7.4 4.7 2.9
Ie� 1.85 1.72 1.70 1.77
β 0.098 0.058 0.036 0.023

sion of a square domain with a rotated square hole are collected in Table 1, where % denotes the
relative error and Ie� is the e�ciency index of estimates. It is seen thatABF 0-approximation
yields good results and the proposed approach is reliable.
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Abstract

Uncertainty propagation and sensitivity analysis for burnup codes are key topics in
the nuclear �eld because of their huge involvement in safety-related problems. Con-
sequently, a correct evaluation of given responses variations after propagating the sys-
tem parameter uncertainties is a primary feature for any burnup code. In the previous
version of the ALEPH Monte Carlo burnup code the uncertainty propagation was not
handled, even though several uncertainties come into play when dealing with nuclear
data. Variances or covariances are generally provided for neutron cross sections, decay
data and neutron �ssion product yields by the general-purpose nuclear data libraries and
they can have a major impact on the selected responses of the problem.

To cope with the presence of uncertainties in burnup calculations we implemented
linear sensitivity analysis and uncertainty propagation options to the new version of the
ALEPH Monte Carlo burnup code. We developed new linear Forward Sensitivity Ana-
lysis (FSA) and linear Adjoint Sensitivity Analysis (ASA) procedures to propagate nuclear
data uncertainties throughout sequential burnup steps, and a Total Monte Carlo (TMC)
uncertainty quanti�cation routine for data comparison. In this work, we explained the
methodology and compared the results of the uncertainty quanti�cation of the di�erent
techniques on several major nuclear responses.

Key words: burnup, nuclear data, sensitivity analysis, uncertainty propagation.

1 Introduction

ALEPH [4] is a Monte Carlo burnup code that has been developed at SCK•CEN since 2004.
It combines the potentialities of any version of the stochastic Monte Carlo N-Particle trans-
port code MCNP(X) [7, 8] and of a deterministic numerical solver. The continuous work of
improvement of the code brought to the recent release of its second version ALEPH-2 [6].

What was implemented in the frame of this work was a new ALEPH capability, that is,
a full sensitivity analysis procedure for what concerns both parameter uncertainties coming
from the evaluated libraries and perturbations introduced by the user. Consequently, we ex-
panded this potentiality to a full uncertainty propagation. Furthermore, ALEPH provides a
high �exibility having three di�erent routines to propagate uncertainties, each of them with
its own method: a linear Forward Sensitivity Analysis (FSA) procedure [1, 2], a linear Ad-
joint Sensitivity Analysis (ASA) procedure [3, 2] and a Total Monte Carlo (TMC) uncertainty
quanti�cation [5].
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2 Results

Our purpose was to describe and evaluate the new uncertainty propagation features of the
ALEPH code against several responses. We chose the �ssion pulse decay heat as one of the
system responses for its relevance in several nuclear applications that involve safety-related
problems. The ALEPH ASA procedure returned statistics comparable with the more per-
forming TMC calculation. In addition, apart from processing the uncertainty propagation
with accurate results, the ASA was computationally speaking superior to TMC as only one
response function was evaluated. Moreover, ALEPH also made possible the determination of
the sensitivity coe�cients of those parameters that have a major impact on the uncertainty
of the response.
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Abstract

The nuclear reactor transient analyses using best estimate codes provide a better un-
derstanding and more accurate modelling of the key physical phenomena, which allows
a more realistic evaluation of the conservatism’s and margins in the analyses performed
for the Final Safety Analysis Report (FSAR). The use of the best estimate codes and meth-
ods is necessary to meet the increasing technical, licensing and regulatory requirements
for major plant changes (e.g. steam generator replacement), power uprate, core design
optimization (cycle extension), as well as Periodic Safety Review. This paper presents
brie�y the multi-physics capabilities currently in use at Tractebel Engineering, acting as
owner’s engineer for Electrabel who owns and operates all Belgian nuclear power plants.

Key words: nuclear engineering, PWR transient safety analysis, multi-physics, code
coupling

1 Introduction

Tractebel Engineering (TE) has been working since 2000 on the application of advanced multi-
physics code packages in order to perform high �delity simulation of PWR reactor transients.
The objective is to provide tools and methods for independent veri�cation of the safety ana-
lyses performed for the Belgian plants. The TE code package was �rst used to develop a Main
Steam Line Break in Hot Zero Power conditions (MSLB-HZP) accident analysis methodology
[1]. This methodology has been accepted by the Belgian Safety Authorities for applications
related to the power uprate and steam generator replacement project of the Doel 1 and Doel
2 plants, to the Tihange-3 FSAR re-analysis and to justify the cycle length extension of Doel
4 to 18 months. Those applications were extended to accident analysis methodologies at hot
full power condition like the MSLB-HFP and the Feed Water Line Break (FWLB) accident.

Flow mixing in PWR’s is an important phenomenon for the transient behaviour of asym-
metric reactor accidents such as MSLB or FWLB. In such transients, the �ow mixing is a key
parameter because it will determine the temperature distribution at the core inlet which has
a signi�cant impact on the core power response. Recently, TE has demonstrated the potential
of the Computational Fluid Dynamics (CFD) simulation to predict the mixing at the core inlet
and to generate more realistic inlet coolant temperature maps for multi-physics simulation
[2].

TE is currently developing a multi-physics methodology to evaluate the margins with
respect to the revised safety criteria for the PWR Rod Ejection Accident (REA) [3].
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2 Multi-physics modelling and transient analysis capabilities

The TE multi-physics code package (Fig. 1) is composed by the 3-dimensional neutronic code,
PANTHER, coupled dynamically with the system thermal hydraulic code RELAP5 (via the
TALINK coupler) and with the core thermal hydraulic code COBRA-3C_TE (using sockets).
Built-in one-way links provide time-dependent high �delity power histories and distributions
for speci�c criteria evaluation, either with the sub-channel thermal hydraulic code COBRA-
3C or with the fuel rod thermal-mechanical code FRAPTRAN.

Figure 1: The TE multi-physics code package.

PANTHER is a multi energy groups 3-D nodal di�usion code for both steady-state and
transient core simulation. PANTHER has been developed by British Energy (BE) to perform
a complete range of PWR reactor calculations for fuel management design safety parameters
assessment, fault transient analysis and operational support.

The RELAP5 code is a 6 �eld equations (3 conservation’s equations for the vapor and
the liquid respectively) best estimate system thermal hydraulic transient analysis code, de-
veloped by the USNRC, to simulate the LWR plant response for di�erent postulated accidents
including loss of coolant and reactivity insertion accidents as well as operational transients.

COBRA-3C_TE is a coupled version of the sub-channel thermal hydraulic code being
developed by TE starting from the original COBRA3C_MIT2 code. The main new capabilities
of the thermal-hydraulic core model, compared to the built-in PANTHER thermal-hydraulic
module, are the modelling of channel cross �ows and turbulent mixing (this e�ect will be
more important for low �ow cases) and the extension of the heat transfer correlation range
to the very low �ow region.

FRAPTRAN code is developed by Paci�c Northwest National Laboratory (PNNL) for ana-
lysing the thermal-mechanical behaviour of a LWR fuel rod under transient and accident
conditions such as LOCA and RIA. It is used on the basis of the steady-state fuel conditions
calculated by the FRAPCON code.
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Abstract

A highly accurate approximation for the coe�cients of the series expansion of the
solution for Laplace’s equation around the singular vertex, which are called the general-
ized stress intensity factors (GSIFs), is obtained by One-Block Method.

Key words: Keywords: Laplace equation, Corner singularity, Block method, Stress in-
tensity factor, Convergence
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1 Introduction

It is known that the behaviour of the solution u of the two dimensional Laplace equation in
the vicinity of a singular point, when the boundaries sharing this point are not curved, is
given by

u (r ,θ ) =
∞∑

j=0
ajr

µ j fj (θ ), (1)

where (r ,θ ) are the polar coordinates, centered at the singular point, µ j and fj (θ ) are determ-
ined by the geometry and the boundary conditions along the boundaries sharing the singular
point. The unknown constants aj are often called generalized stress intensivity factors (GSIFs)
in which high approximations are very important in many engineering problems. Most of
methods for the approximation of these coe�cients can be divided into two groups: (i) the
post-processing approach in the �nite element or �nite di�erence methods and (ii) directly
calculated methods. It is obvious that if the goal of computation is the calculation of the
GSIFs then the directly calculated methods become more preferable. If the local asymptotic
expansion (1) converges over the entire solution domain, then by de�ning its N−th sum as an
approximate solution of the boundary value problem, the boundary condition enforcement is
necessary for the derivation of the unknown coe�cients (see [1]). These approaches are called
the boundary approximation methods (BAMs) and converge exponentialy with respect to N .
However, the matrix of the algebraic system of equations for the unknowns aj , j = 1,2, ...,N
gets illconditioning (cond . > 105) when N increases.

In this paper a one block method (see [2] for the approximation of a0) is developed for a
highly accurate approximation of any number of coe�cients (GSIFs) in (1) for the problems
in domains of L-shaped and a rectangle with a slit.
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2 Boundary value problem on special polygons

Let G be an open simply connected polygon, γj , 1 ≤ j ≤ M , be its sides, including the ends,
enumerated counterclockwise, γ = γ1 ∪ · · · ∪γM be the boundary ofG, and by γ ′ = γ2 ∪ · · · ∪
γM−1. Let α jπ , α j ∈

{

1
2 ,

3
2 ,2

}

, be the interior angle formed by the sides γj−1 and γj , (γ0 = γM ),

and let α1 ∈
{

3
2 ,2

}

. Denote by Aj = γj−1 ∩ γj and let ρ (x ,y) be the distance from (x ,y) ∈ γ ′
to the vertex A1, and let d0 = minγ ′ ρ (x ,y), d1 = maxγ ′ ρ (x ,y). It is assumed that d1 <
2d0. Let r ,θ be a polar system of coordinates with pole in A1, where the angle θ is taken
counterclockwise from the side γ1. Let νj be a prameter taking the values 0 or 1, and let
ν j = 1 − νj .

We consider the boundary value problem

∆u = 0 on G, νju + ν ju
(1)
n = φ j on γj , j = 1,2, . . . ,M , (2)

where φ1 = φM = 0, and φ j , j = 2,3, . . . ,M − 1 are constants, ν0 = νM and ν0 + ν1 ≥ 1.
Consider the sector T 0 = T (r0) = {(r ,θ ) : 0 < r < r0,0 < θ < α1π},with the center at

the vertex A1 and with the radius r0, (d1 < r0 < 2d0).We harmonically extend the solution u
of the problem (2) to the sector T 0 and represent it on T 0 ⊃ G as

u (r ,θ ) =

α1π∫

0

u (r0,η)R1 (r ,θ ,η)dη, (3)

where R1 (r ,θ ,η) is de�ned through the Poisson’s kernel for unit circle.
Let n be a positive integer, β = α1π

n ,θ
m = (m− 1

2 )β and consider the n points zm = r0eiθm ,
m = 1,2, . . . ,n, on the arc of the sector T 0. By extension, there exists the point P ′m ∈ G with
coordinates z ′m = r ′eiθ ′m , for each point zm ,m = 1,2, . . . ,n, respectively, and from (3), by
composite mid-point rule, we obtain a well conditioned system of algebraic equations for the
approximate values um of u (r0,η) at the quadrature nodes zm ,m = 1,2, ...,n. The GSIFs is
approximated by using the following formula

ak =
2
α1π

r
−µk
0

α1π

n

n∑

m=1
um fk

((
m − 1

2

) α1π
n

)
, k = 0,1, ...,N ,

where µk and fk are given in the series representation. It is proved that ak converges to ak
exponentially with respect to the number of quadrature nodes n.
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Abstract

An algorithm is developed to interpolate edge unknowns from cell-centered ones for
di�usion equations with discontinuities. It is applied to construct di�usion scheme with
cell-centered unknowns only on skewed meshes. And the e�ectiveness of the scheme is
demonstrated by numerical experiments.

Key words: cell-centered scheme, di�usion equations, discontinuity, �nite volume meth-
ods, skewed meshes
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1 Introduction

Skewed or non-orthogonal meshes arise in various �elds, e.g., grid generation on physical do-
mains with complex geometry, and numerical solutions of di�usion problems in Lagrangian
radiation hydrodynamics. In the construction of cell-centered �nite volume schemes for dif-
fusion problems, due to the skewness of the grids, auxiliary unknowns de�ned at the vertices
or edges are often introduced in addition to the cell-centered unknowns. The auxiliary un-
knowns can also be treated as primary unknowns. However, such schemes lead to greater
computational costs or more complex algorithms than those with cell-centered unknowns
only, especially when the di�usion scheme needs to be coupled with a cell-centered hydro-
dynamic scheme. This disadvantage has motivated researchers to construct schemes with
cell-centered unknowns only.

We develop an algorithm to interpolate the auxiliary unknowns de�ned at the edge points
from those de�ned at the cell-centers. Then a di�usion scheme with cell-centered unknowns
only is constructed. Our algorithm deals with discontinuities strictly. Numerical results show
that the scheme is second order accurate for discontinuous problems on skewed meshes.

2 Approximation of edge unknowns

The di�usion problem under consideration is

−∇ · k∇u = f in Ω. (1)
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In [1], we obtain the approximation of node unknowns

uMr+1
− uMr

= ψ
[
τσ1

(
uCRj − uCLi

)
− τσ2

(
uCLj − uCRi

)]
(2)

where
ψ =

1
τσ1Dσ1 − τσ2Dσ2

,

τσ1 =
kCLi kCRj

kCLi h
CRj

δr ,r+1
+ kCRj h

CLi
δr ,r+1

,

Dσ1 =
(xMr+1 − xMr ) (xCRj − xCLi ) + (yMr+1 − yMr ) (yCRj − yCLi )

l2r ,r+1
.

As shown in Fig. 1, Mr and Mr+1 are the nodes. Ci and Cj are the centers of the cells. With
(2), we obtain the explicit expression for the auxiliary unknowns which can be de�ned at any
point on the edge. Note that the interpolation method for the anisotropic problems can be
found in [2].

  

P r,r+1   n r,r+1   

M r+2   

M r+3   

M r   

M r+1   

C i   
C j   

Figure 1: Points used in the approximation of the node unknowns
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Abstract

It is shown that the Ziggurat algorithm designed for sampling for monotone decreas-
ing and symmetric unimodal distributions can be utilized for asymmetric unimodal dis-
tributions with necessary modi�cations. An e�cient random number generator (RNG)
for sampling from the Moyal distribution implementing the modi�ed version of the Zig-
gurat algorithm is presented.

Key words: Ziggurat algorithm, Moyal distribution, random number generation.

1 Introduction

Modeling and simulation of ionization of �uctuations plays an important role in nuclear phys-
ics research and in solving practical problems that arise in development of nuclear reactors.
Fluctuation of energy loss by ionization of a charged particle in a thin layer of matter was
theoretically described by Landay [2]. This description was presented in the form of an asym-
metric probability density function (pdf).

The values of the pdf of the Landau distribution are calculated via numerical integration,
which makes it very di�cult to obtain random numbers from this distribution needed for
Monte Carlo simulation of energy loss by ionization. Moyal proposed a good approximation
to the Landau distribution called the Moyal distribution [3]. The values of its pdf are calculated
via a simple formula

f (x ) =
1√
2π

exp
(
−12 (x + exp(−x ))

)
.

However, despite the simplicity of the formula, e�cient algorithms for sampling from the
Moyal distribution have not been presented to date. In this article we show that a very fast
Ziggurat algorithm [1] designed for sampling from a monotone decreasing probability distri-
bution or a symmetric unimodal distribution extends to asymmetric unimodal distributions
and therefore can be implemented for the Moyal distribution.

2 Description of the Modi�ed Ziggurat Algorithm

The idea of the Ziggurat algorithm is covering the target density with a set of n equal-area
regions, called layers, all of which except one are horizontal rectangles, then choosing one of
them and sampling from it.
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In the presented asymmetric unimodal (AU) version of the Ziggurat algorithm the layers
Li ,i = 2,n are horizontal rectangles which extend horizontally from li to ri and vertically from
yi toyi+1, l2 < l3 < ... < ln < 0, r2 > r3 > ... > rn > 0, yi = f (li ), 2 ≤ i ≤ n, yn+1 = f (0). The
�rst layer L1 is a union of a rectangle which extends horizontally from l2 to r2 and vertically
from y1 = 0 to y2, and two in�nite tails. The left tail is the set of all points (x ,y) below the
curve y = f (x ) for which x < l2 and the right tail is the set of all points below the curve for
which x > r2.

Let p∗i = di+1/di ,p
∗∗
i = (li+1 − li )/di + p∗i , where di = ri − li , 2 ≤ i ≤ n, ln+1 = dn+1 = 0,

and let p∗1 = y2/(y3 − y2), d1 = d2.
The setup stage includes the initialization of the tables for li ,di ,yi ,p∗i and p∗∗i , and the

choice of auxiliary algorithms for generating from the tails. The main stage of theAU Ziggurat
algorithm looks as follows

1. Generate U0 uniformly distributed in [0,1). Set i = dU0 · ne and set s = i −U0 · n.

2. If s < p∗i , set x = li+1 + s · di and return x .

3. If i = 1, generate a point T from one of the tails, set x = T and return x .

4. Generate U1 uniformly distributed in [0,1) and set y = yi +U1 · (yi+1 − yi ).
5. If U0 < p∗∗i , set x = li + (s − p∗i ) · di ; otherwise set x = li + di · s .
6. Compute f(x). If y < f (x ), return x .

7. Go to step 1.

3 Concluding Remark

A RNG for generating the Moyal random variable (rv) based on the presented algorithm has
been developed and tested. The RNG proved to be very e�cient, since the algorithm termin-
ates at step 2, and therefore requires a uniform random number and only one comparison for
a generated value of the Moyal rv with probability 0.97 at n = 64.
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Abstract

The contribution deals with the semi-smooth Newton method applied to the solu-
tion of contact problems with friction. The primal-dual algorithm is reformulated as the
dual one. Its globally convergent variant based on computing a monotonously decreas-
ing sequence is analyzed. Numerical experiments illustrate the performance of di�erent
implementations of the method.

Key words: contact, friction, semi-smooth Newton method, convergence rate
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Problem description and main results

Finite element approximations of frictional contact problems of linear elasticity lead typically
to non-smooth equations that are equivalent, in many cases, to a constrained minimization.
Algorithms based on active sets belong to the most e�cient iterative methods for solving
such problems. There are at least two strategies how to introduce active set algorithms in
context of contact problems. The �rst ones have been developed for dual contact problems
given by the minimization of a strictly quadratic cost function subject to separable inequal-
ity constraints [4, 3, 6, 7] that is the case of the Tresca friction law. Here, the active set is
the index subset of components, for which the constraints are satis�ed by equalities in the
current iteration. The conjugate gradient method (CGM) generates iterations with respect
to remaining non-active components and, when the progress is not su�cient, the active set
is changed by a gradient projection step. Thus, the algorithm seeks for the active set in the
solution so that it generates monotonously decreasing iterations laying in the feasible set and
enjoys the R-linear convergence rate [4, 3, 7].

Another class of active set algorithms arises from the use of the semi-smooth Newton
method (SSNM). The starting point is the primal-dual formulation of contact problems, in
which contact conditions are reformulated by non-smooth functions as proposed already
in [1]. Later on, it was recognized that the SSNM may be interpreted as a primal-dual active
set method [5]. This approach is widely used for solving contact problems in two (2D) as well
as three (3D) space dimensions with di�erent friction laws. The standard convergence ana-
lysis uses the slant di�erentiability concept [2, 5] leading to the local superlinear convergence
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rate. This convergence result assumes exact solutions of inner linear systems that is, how-
ever, unrealistic for large-scale problems. Another drawback consists in the fact that an initial
iteration "su�ciently close" to the solution is required. To overcome these di�culties one can
modify the SSNM so that the resulting algorithm is globally convergent and, consequently,
an appropriate initial iteration is known a-priori.

In the contribution, we analyze a relation between above-mentioned active set strategies.
First, we show that the primal-dual active set algorithm of the SSNM is fully identical with a
pure dual algorithm. We propose its heuristic implementation that accepts inexact solutions of
inner subproblems computed by few CGM iterations terminated by an adaptive inner stopping
criterion. Then we modify the algorithm so that a sequence of the cost function values is
monotonously decreasing. The global R-linear convergence rate of the modi�ed algorithm
is proven using the decrease of the cost function along the projected gradient [4, 3, 7]. We
will also observe a relation to the classical projected gradient methods. Results of numerical
experiments will be reported including of an extended algorithm treating Coulomb friction
for realistic engineering problems [8].

Acknowledgements

This work was supported by the European Development Fund in the IT4Innovations Centre of
Excellence project CZ.1.05/1.1.00/02.0070 and by the grant P201/12/0671 of the Grant Agency
of the Czech Republic.

References
[1] P. Alart, A. Curnier, A mixed formulation for frictional contact problems prone to Newton like solution

methods, Comput. Methods Appl. Mech. Engrg. 92 (1991), 353–375.

[2] X. Chen, Z. Nashed, L. Qi, Smoothing methods and semismooth methods for non-di�erentiable operator equa-
tions, SIAM J. Numer. Anal. 38 (2000) 1200–1216.

[3] Z. Dostál, Optimal quadratic programming algorithms: with applications to variational inequalities,
Springer, 2009.

[4] Z. Dostál, J. Schöberl, Minimizing quadratic functions over non-negative cone with the rate of convergence
and �nite termination, Comput. Optim. Appl. 30 (2005) 23–44.

[5] M. Hintermüller, K. Ito, K. Kunisch: The primal-dual active set strategy as a semismooth Newton
method. SIAM J. Optim. 13 (2003), 865-âĂŞ888.

[6] R. Kučera, Minimizing quadratic functions with separable quadratic constraints, Optim. Methods Soft. 22
(2007) 453–467.

[7] R. Kučera, Convergence rate of an optimization algorithm for minimizing quadratic functions with separable
convex constraints, SIAM J. Optim. 19 (2008) 846–862.

[8] R. Kučera. K. Motyčková, The R-linear convergence rate of an inexact semi-smooth Newton method for
solving contact problems with friction, Submitted to Comput. Optim. Appl. (2014).

page 100 of 223 ISBN: 978-9-08223-090-1 ACOMEN©2014
[paper 47]



Book of abstracts of the 6th International Conference
on Advanced Computational Methods
in Engineering, ACOMEN 2014
23–28 June 2014.

Di�erentials of Eigenvalues and Eigenvectors
in Undamped Discrete Systems

Ra�aello Seri∗1

1 Dipartimento di Economia, Università degli Studi dell’Insubria

e-mails: raffaello.seri@uninsubria.it

Abstract

First- and second-order di�erentials of a (simple) eigenvalue and the associated ei-
genvector in an undamped discrete system are investigated. For the eigenvector, several
normalizations have been considered in the literature; incidentally, we review them and
clarify under what conditions they uniquely identify the eigenvector. Then we provide
closed-form expressions for the di�erentials under the vector-component, orthogonal,
mass and unit-length normalizations. The proposed formulas have no pretension to be
computationally e�cient in large systems, but may be useful for the interpretation of the
results.

Key words: di�erentials, eigenvalues, eigenvectors, undamped systems

1 Introduction

In the analysis of free undamped vibration and structural stability, the following generalized
eigenvalue problem is often considered:

(K − λM) u = 0

where λ is called eigenvalue, u (right) eigenvector, K sti�ness matrix, and M mass matrix. An
interesting problem that has received attention in the literature is the computation of the
derivatives of the eigenvalues and of the eigenvectors of the problem with respect to a design
variable. Here we choose to consider a strictly related but slightly di�erent topic, namely the
matrix di�erentials (see [2, 1]) of the eigenvalues and of the eigenvectors of this generalized
eigenvalue problem.

2 Main Results

For the purposes of this short exposition, we just recall that the matrix di�erential of a matrix
function is the part of the perturbation of the function in response to a perturbation of its
argument that is linearly related to the variation of the argument itself.

Let
(K0 − λ0M0) u0 = 0
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be the unperturbed problem. Here and in the following, the index 0 (such as in K0 or M0)
indicates that the quantity is obtained before the perturbation is applied (e.g., λ0).

Consider now two matrices M and K that are obtained as (�rst-order) perturbations of
the matrices M0 and K0, say M = M0 + dM and K = K0 + dK where dM and dK are mat-
rix di�erentials. Our aim is to identify the matrix di�erentials dλ, d2λ, du and d2u in the
developments:

λ ' λ0 + dλ + 1
2d2λ,

u ' u0 + du + 1
2d2u.

While the eigenvalue is identi�ed without any need for normalizations, the eigenvector needs
to be normalized in order to be univocally de�ned. The literature on this topic is quite com-
plicated and not always very precise as concerns the assumptions. In passing by, we review
it clarifying the conditions under which several normalizations can be applied.

The formula for dλ is:1

dλ =
vT0 (dK − λ0dM) u0

vT0M0u0
(1)

while the one for d2λ is:

d2λ = −2dλ · v
T
0dMu0
vT0M0u0

+
2vT0 (dK − λ0dM − dλM0) du

vT0M0u0
.

As concerns the eigenvector, we have:

du = − (K0 − λ0M0)
+ (dK − λ0dM − dλM0) u0 + δ1u0 (2)

d2u = (K0 − λ0M0)
+
(
2dλdM + d2λM0

)
u0

−2 (K0 − λ0M0)
+ (dK − λ0dM − dλM0) du + δ2u0 (3)

where δ1 and δ2 are determined according to the normalization.

3 Extensions

In the paper this result is extended to the case in which M and K are obtained as second-order
perturbations of M0 and K0. Moreover, it is applied to several normalizations presented in
the literature, namely the vector-component, orthogonal, mass and unit-length normaliza-
tions. We also provide some applications of the previous result, namely to the simpli�cation
of formulas in the case of distinct eigenvalues, to the obtention of derivatives, and to the
perturbation of eigenvalues and eigenvectors in systems with small hysteretic damping.

References
[1] A. Hjørungnes, D. Gesbert, Complex-valued matrix di�erentiation: Techniques and key results, IEEE Trans-
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Abstract

Many images belong to classes of functions with various directional regularity beha-
viors. These behaviors are important for detection of edges. Standard isotropic multi-
dimensional wavelets obtained as tensor product do not give a satisfactory algorithm to
detect directional singularities. Using Triebel anisotropic wavelets, we obtain a criteria
of directional regularity.

Key words: Images, contours, directional regularity, anisotropic Hölder regularity, an-
isotropic Triebel wavelet basis, anisotropic wavelet coe�cients

1 Introduction

Many natural mathematical objects, as well as many multi-dimensional signals and images
from real physical problems, need to distinguish local directional behaviors (for tracking con-
tours in image processing for example), see for instance [1] and the references therein. A
wide range of directional transform ideas have been proposed. Steerable Pyramids and Cor-
tex Transforms were developed in the 1980s by vision researchers (Adelson, Freeman, Heeger,
and Simoncelli [7] and Watson [9]) to o�er increased directional representativeness. Exten-
sions of wavelet bases which can be elongated in particular directions were considered. They
include the ridgelets of Candes and Donoho, see [4], or the bandelets of Mallat, see [6], but
are e�cient with singularities along lines, along hyperplanes, etc, for which wavelets do not
deal with e�ciently.

For pointwise singularities, it is natural to de�ne the Hölder regularity at a point y in
a direction e ∈ Rm with |e | = 1 as the Hölder regularity at 0 of the one variable function
fe : s 7→ f (y + se ). It seems that one cannot expect directional regularity to be characterized
in terms of the size of the usual wavelet coe�cients, because fe is de�ned as the trace of f on
a line, which is a set of vanishing measure and wavelets have a support of nonempty interior.
Thus we should take into account the values of f around the line considered. Therefore
the de�nition of directional smoothness should include such information. However, in the
asymptotic of small scales, the values taken into account should be localized more and more
sharply around this line. These considerations motivate an alternative de�nition by Ja�ard [5]
which can be seen as an extension of the notion of anisotropic regularity which was already
introduced by Ben Slimane [2].

We will give a criterion of directional Hölder regularities [3] in terms of decay conditions
of anisotropic Triebel wavelet coe�cients [8].
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Abstract

In this work, some nonlinear fully implicit �nite di�erence discrete schemes are stud-
ied for a two-dimensional nonlinear coupled system of parabolic and hyperbolic equa-
tions. These nonlinear schemes are proved to be absolutely stable and have L∞ (H 1) con-
vergence. E�cient iteration algorithms are designed to accelerate the solution of these
nonlinear schemes. Numerical tests are done to demonstrate the high accuracy and e�-
ciency of these schemes and iterations.

Key words: nonlinear coupled problem, nonlinear fully implicit discrete scheme, conver-
gence analysis, iteration acceleration

MSC 2010: 65M06, 65M12, 65B99

1 Nonlinear coupled problem

Coupled systems of parabolic and hyperbolic equations often appear in the study of high
temperature hydrodynamics and thermo-elasticity problems [1], [2], [3]. And their accurate
and fast solution is of great importance in practice. In this paper, we consider the following
nonlinear problem

ut − ∇ · (a(X ,t ,u,v )∇u) = f (X ,t ,u,v,ux ,uy ,vx ,vy ), X ∈ Ω,t ∈ J ,
vt t − ∇ · (b (X ,t ,u,v )∇v ) = д(X ,t ,u,v,ux ,uy ,vx ,vy ,vt ), X ∈ Ω,t ∈ J ,

u (X ,t ) = 0, v (X ,t ) = 0, X ∈ ∂Ω,t ∈ J ,
u (X ,0) = u0 (X ),v (X ,0) = v0 (X ),vt (X ,0) = vt0 (X ), X ∈ Ω̄, (1)

where X = (x ,y), Ω is an open rectangular domain in R2 with boundary ∂Ω. J = (0,T ], T is
a positive constant. a,b, f ,д,u0,v0,vt0 are known functions.
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2 Nonlinear discrete schemes and iteration accelerations

Two nonlinear discrete schemes are proposed to solve the problem. And Picard iteration and
Newton iteration are respectively designed to solve those nonlinear schemes. For example, a
basic three-level fully implicit �nite di�erence scheme for (1) is given by �nding U n+1

i j , V n+1
i j

andW n+1
i j such that

3
2dtU

n+1
i j − 1

2dtU
n
i j − δ (an+1 (U ,V )δU n+1)i j = f n+1i j (U ,V ),

3
2dtW

n+1
i j − 1

2dtW
n
i j − δ (bn+1 (U ,V )δV n+1)i j = д

n+1
i j (U ,V ,W ),

3
2dtV

n+1
i j − 1

2dtV
n
i j =W

n+1
i j , (2)

with homogeneous Dirichlet boundary conditions and corresponding initial approximations,
where dtϕn+1 = ϕn+1−ϕn

τ represents for the backward Euler time discretization for ϕn+1t and
δ (ψ (U ,V )δϕ)i j the central di�erence quotient approach for corresponding di�usion operator.

3 Theoretical analysis and numerical experiments

Discrete function analysis are applied to prove the convergence and stability of the nonlinear
schemes. Especially their L∞ (H 1) convergence properties are obtained with introducing new
inductive hypothesis reasoning techniques to overcome the di�culties caused by the nonlin-
earity and the coupling of di�erent equation types. Using these convergence properties, the
convergence accuracy of the iterations to the original problem and the convergent ratio of
the iterations to the discrete schemes are attained. For example, theoretical analysis shows
Scheme (2) is absolutely stable, has second order L∞ (H 1) accuracy in both spatial and tem-
poral variants to the original problem, its Picard iteration and Newton iteration have the same
order accuracy and yet a linear and quadratic convergent speed respectively. Amounts of nu-
merical experiments verify the validity of the theoretical conclusions and demonstrate the
superior performance (much higher accuracy and e�ciency) of Newton iteration over Picard
iteration, and the second order temporal accuracy scheme over its �rst order counterpoint.
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Abstract

A semilinear parabolic problem of second order with an unknown solely time-dependent
convolution kernel is considered. We already proved, based on a given global measure-
ment, the existence of a unique weak solution. In this contribution, we perform an error
analysis of the proposed numerical algorithm based on Rothe’s method.

Key words: parabolic IBVP, convolution kernel, reconstruction, error analysis

1 Introduction

In [1], we determined the solution u and reconstructed a solely time-dependent convolution
kernel K of the following nonlinear problem



∂tu − ∆u + K (t )h + (K ∗ u) (t ) = f (u,∇u), in Ω × Θ,
−∇u · n = д, on Γ × Θ,
u (x,0) = u0 (x),

(1)

where Ω is a Lipschitz domain in RN , N ≥ 1, with ∂Ω = Γ and Θ = [0,T ], T > 0, the time
frame, when a global measurement

∫

Ω
u (x,t )dx =m(t )

is known. Such type of problems arise for example in the theory of reactive contaminant
transport [2]. We proved the following [1]:

Theorem Suppose f is bounded and Lipschitz continuous in all variables, д ∈ C1 (Θ,L2 (Γ)),
h ∈ C0 (Θ,H1 (Ω)) ∩ C1 (Θ,L2 (Ω)) and mint ∈Θ |(h(t ),1) | ≥ ω > 0, m ∈ C2 (Θ,R) and u0 ∈
H2 (Ω). Then there exists a unique couple solutions 〈u,K〉 to (1), where u ∈ C(Θ,H1 (Ω)), ∂tu ∈
L∞ (Θ,L2 (Ω)) and K ∈ C(Θ), K ′ ∈ L2 (Θ).

In this contribution, we derive error estimates for the time discretized model.
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2 Time discretization

We apply the Rothe method [3]. Consider an equidistant time-partitioning of the time frame
Θ with a step τ = T /n, for any n ∈ N. We use the notation ti = iτ and for any function z we
write

zi = z (ti ), δzi =
zi − zi−1

τ
.

Now, let us introduce the following piecewise linear function in time

un : Θ→ L2 (Ω) : t 7→

u0 t = 0
ui−1 + (t − ti−1)δui t ∈ (ti−1,ti ]

, 0 ≤ i ≤ n,

and a step function

ūn : Θ→ L2 (Ω) : t 7→

u0 t = 0
ui t ∈ (ti−1,ti ]

, 0 ≤ i ≤ n.

Similarly, we de�ne K̄n , h̄n , д̄n , m̄n and m′n . At time ti , we infer from the variational formu-
lation of (1) the backward Euler scheme

(δui ,ϕ) − (∆ui ,ϕ) + Ki (hi ,ϕ) +
i∑

k=1
(Kkui−kτ ,ϕ) = ( fi−1,ϕ). (2)

where fi = f (ui ,∇ui ) and where Ki is recovered from the integral overdetermination. Using
Rothe’s functions, we can write the discretized problem on the whole time frame as1

(∂tun ,ϕ) + (∇ūn ,∇ϕ) + (д̄n ,ϕ)Γ + K̄n (h̄n ,ϕ) +
bt cτ∑

k=1
(K̄n (tk )ūn (t − tk )τ ,ϕ)

= ( f (ūn (t − τ ),∇ūn (t − τ )),ϕ)

and alike for the measurement (ϕ = 1). In this paper, we show that

max
t ∈[0,T ]

‖un (t ) − u (t )‖2L2 (Ω)
+

∫ T

0
‖∇un (t ) − ∇u (t )‖2L2 (Ω)

dt = O (τ 2)

and ∫ T

0
|K̄n (t ) − K (t ) |2dt = O (τ 2).
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Abstract

We present fast spectral solvers for Partial Di�erential Equations that address some
of the main di�culties associated with simulation of realistic engineering systems in
the frequency- and time-domains. Based on a novel Fourier-Continuation (FC) method
for the resolution of the Gibbs phenomenon and fast high-order methods for evaluation
of integral operators, these methodologies give rise to e�cient frequency- and time-
domain solvers for PDEs for general engineering problems and structures. Our integ-
ral algorithms can solve, with high-order accuracy, problems of electromagnetic and
acoustic scattering for complex three-dimensional geometries as well as PDE eigenvalue
problems in complex (singular) domains and with mixed boundary conditions (e.g. Di-
richlet/Neumann); our FC-based di�erential solvers for time-dependent PDEs, in turn,
give rise to essentially spectral time evolution, essentially free of pollution or dispersion
errors, for general PDEs in the time domain. A variety of applications to linear and non-
linear PDE problems, including the Maxwell equations, the Navier-Stokes equations, the
elastic wave equation, Laplace eigenvalue problems, etc., demonstrate the signi�cant im-
provements the new algorithms can provide over the accuracy and speed resulting from
other approaches.

Key words: Dispersionless solver, Fast integral-equation solver, Fast spectral PDE solver,
Fourier Continuation method (FC), High-frequency problems

Description

This presentation concerns computational solvers for Partial Di�erential Equations (PDE), as-
sociated theoretical questions, and application in various areas of science and engineering—
including applied physics, electrical engineering, geophysics, photonics and remote sensing.
An emphasis is placed on accurate, e�cient and generally applicable algorithms; the asso-
ciated theoretical discussions, in turn, seek to provide necessary background and perform-
ance guarantees. From a mathematical standpoint this presentation concerns two main areas,
namely,

I. Frequency-domain, time-harmonic acoustics and electromagnetism, and

II. Time-domain Partial Di�erential Equations in general three-dimensional domains, in-
cluding applications in acoustics and electromagnetism as well as elasticity and �uid-
dynamics.
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The basic elements underlying the techniques and methodologies to be considered are
not numerous, but they do have broad applicability. They include new types of high-order
integral equation solvers [3, 5, 6, 7, 8, 10], novel rapidly-convergent Green functions for peri-
odic media [2], and explicit as well as unconditionally stable general-geometry Fourier-based
methods for time-evolution of PDE [1, 8, 9, 11]. The fast high-order integral equation solvers
rely on e�cient integration rules and use of certain “equivalent sources” and FFT acceleration.
The new Green functions can be used at and around spectral anomalies (Wood anomalies) at
which periodic Green functions used previously cease to exist. The time-domain algorithms,
�nally, are based on a novel concept of Fourier continuation for accurate Fourier-series ap-
proximation of non-periodic functions. A number of bene�ts arising from these approaches
will be mentioned: accurate solution of frequency domain problems (see e.g. Figure 1 and
its caption) as well as essentially dispersionless solutions of time-domain problems. Applic-
ation in a range of challenging areas of present interest in science and technology will be
presented—which validate and demonstrate the enabling character of the methodologies dis-
cussed.

Figure 1: Left: Zaremba (Dirichlet/Neumann) eigenfunction for Laplace’s equation at high frequency
in the unit circle, with homogeneous (singular!) Neumann and Dirichlet boundary conditions on the
left (|θ − π | < π/2) and right (|θ | < π/2) halves of the circular boundary, respectively. Using a total of
1,024 boundary unknowns and a four minute computation in a single processor of a present day laptop
computer, the eigenvalue λ = 10,005.97295 and corresponding eigenfunction (depicted) were obtained
with 10-digit accuracy. Center and Right: Neumann-Laplace eigenfunctions on (singular!) domains of
the type displayed on the lower-right image (which arise in connection with mode-matching shape
optimization for certain types of antennas). The center and right eigensolutions were obtained in a
computing time of four seconds each with ∼ 0.1% error.
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Abstract

This paper discusses e�cient techniques for the uncertainty quanti�cation of elec-
trical engineering problems, in particular magnetoquasistatic and electroquasistatic sys-
tems. The main contribution is the stochastic modelling of nonlinear material curves in
terms of discrete random variables by the Karhunen-Loève expansion.

1 Introduction

Electrical �elds are used to accelerate particles, to transduce energy, in deep brain stimulation
or in �eld grading materials of high-voltage insulators to avoid �ashover voltages. The robust
design of those devices is a complicated task and to avoid costly prototypes the design pro-
cess relies on computer simulations based on Maxwell’s equations. In particular the strong
nonlinear behavior of materials due to magnetic saturation or microvaristors is a challenge.
In practice, the underlying nonlinear curve is �tted according to measurement data that typ-
ically contain uncertainties and is �nally a�ected by rather large variances due to imperfect
manufacturing. The electromagnetic �elds and thus any quantity of interest inherits this un-
certainty.

2 Magnetoquasistatic example

The transient magnetoquasistatic problem is commonly formulated in terms of the magnetic
vector potential. In 2D it is A> = (0,0,Az ) with Az =: u being the longitudinal component
transverse to the xy-plane and the curl operator |∇ × (0,0,Az ) | = |∇u |. Let (Ω,Σ,µ ) be a
probability space then the stochastic problem reads


σ∂tu (ω) − ∇ ·

(
ν ( |∇u (ω) |,ω)∇u (ω)

)
= Jz , in T × D,

u (ω) = u0, on {0} × D,
u (ω) = 0, on T × ΓDir,

(1)

The �rst author acknowledges the support of the DFG through SFB 634 and the second author is supported by
the Excellence Initiative of the German Federal and State Governments and the Graduate School of Computational
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(b) Error in multipoles of SIS 100 magnet, model from [2]

Figure 1: Eigenfunctions and Simulation results

with the conductivity σ , the time interval of interestT = (0,tend) and the magnetic reluctivity
ν (inverse permeability) that depends on the �ux B (ω) := |∇u (ω) |. Furthermore, the potential
u (ω) and the nonlinear material law depend on random outcomes ω ∈ Ω due to imperfect
manufacturing and measurement errors. Typically one is interested in the impact of the un-
certainty on some quantities of interest, e.g. magnetic multipoles. The multipole expansion
is given by the (stochastic) Fourier coe�cients cp (ω) of Az on the circular contour (rref,θ )

bp (ω) = −Re
{

cp (ω)
} p

rref
, ap (ω) = −Im

{

cp (ω)
} p

rref
.

where p is the pole-pair number, bp and ap are the normal and skew coe�cients.

3 Karhunen-Loève expansion

We propose to use a Karhunen-Loève (KL) expansion instead of parametrized analytic curves,
c.f. [1] to obtain a stochastic model of the nonlinear material relation in terms of discrete ran-
dom random variables Xi (ω). It is obtained by solving an eigenvalue problem. Let (λi ,φi )
denote a sequence of the eigenpairs, see Fig. 1a), then the truncated Karhunen-Loève expan-
sion reads

ν (B,ω) ≈
M∑

i=1

√
λiφi (B)Xi (ω).

By means of the KL-expansion (and the Doob-Dynkin Lemma) the stochastic problem (1) is
transformed into a high-dimensional deterministic problem, with Xi as additional variables
and standard discretization techniques can be applied. In particular we discretize by lowest
order Whitney Elements and the implicit Euler method w.r.t. the "deterministic" variables
x ∈ D and t ∈ T , respectively. For the discretization w.r.t. the "stochastic variables" Xi we
describe and compare the Monte Carlo, gPC and perturbation method, [2], see Fig. 1b).
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Abstract

In this work, we propose a residual error estimator for a stochastic magnetostatic
problem. The reliability as well as the e�ciency of the estimator are established, and a
numerical test illustrates our theoretical predictions.

Key words: Stochastic a posteriori residual error estimator, �nite element method, poly-
nomial chaos expansion.

1 Setting of the problem

This work is devoted to a stochastic magnetostatic problem, consisting in determining the
magnetic �eld H induced by a source Hs generated in a bounded domain D ⊂ R3. This �eld
is given by H = Hs − ∇Ω, where Ω stands for the so-called magnetic scalar potential de�ned
up to an additive constant by :


∇ · (µ (x,ζ ) ∇Ω(x,ζ )) = ∇ · (µ (x,ζ )Hs (x)) in D,

µ (x,ζ ) (∇Ω(x,ζ ) − Hs (x)) · n = 0 on ∂D.
In the above system, x stands for the space variable, whereas ζ ∈ RM is a vector of

random independent variables to account for the uncertainties on the material behavior law.
The Stochastic Partial Di�erential Equations is solved by applying the Spectral Stochastic
Finite Element Method (SSFEM, see [1]), and leads to the determination of the approximated
solution Ωh,p given by :

Ωh,p (x,ζ ) =
∑

1≤i≤N

∑

α ∈K
Ωi,αΨα (ζ )wi (x),

where Ψα are the elements of a �nite dimensional set of polynomial chaos, and wi are the
usual nodal �nite element basis functions in space.
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2 A posteriori error estimation

We are interested in deriving a residual a posteriori error estimator ηglo for the control of the
numerical error eglo generated by the space and stochastic discretizations, de�ned for any ζ
by:

e2glo (ζ ) =

∫

D

���µ (x,ζ ) 12∇ (
Ωh,p (x,ζ ) − Ω(x,ζ )

) ���2 dx,
so that eglo (ζ ) ≤ C ηglo (ζ ), where C is a constant which does not depend on the discretiza-
tion parameters involved and on the data, so that the reliability of the proposed estimator is
established. The proof is based on a decomposition of the error, allowing to make appear the
so-called stochastic error part. Indeed, we derive a stochastic estimator ηsto and a spatial one
ηspa so that η2glo = η2sto + η

2
spa, and propose a result which is an extension of the deterministic

case [2]. Moreover, some e�ciency results are also derived so that the proposed estimator is
equivalent to the error.

3 Numerical example

A numerical test is then proposed, in which some parts of the domain have some random rel-
ative permeabilities (namely µ3 and µ4 in Figure 1). The mean value of the proposed stochastic
estimator ηsto is compared to the mean value of the stochastic error estimated by the use of
a Monte-Carlo method, for di�erent truncation orders of the polynomial chaos expansion.
Then, the behaviors of the stochastic and spatial parts of the estimator are compared, re�ning
the spatial mesh or the order of the polynomial chaos to illustrate their behaviors in di�erent
con�gurations.

Figure 1: Numerical test for the magnetostatic problem.
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Abstract

Stiction is a common failure mechanism in microelectromechanical systems (MEMS)
in which two interacting bodies permanently adhere together. This problem is due to the
comparability of adhesive surface forces (e.g. Van der Waals forces, capillary forces) and
body forces in the MEMS context.

To predict the adhesive contact forces coupled with stiction phenomenon, the com-
bination of the Nayak statistical approach with the asperity-based theories is a common
solution. However, this method contains some limitations due to the underlying assump-
tions: in�nite size of the interacting rough surfaces and negligibility of asperity interac-
tions. Furthermore, the Nayak solution su�ers from a considerable dependency on the
choice of the minimum wave length considered in the surface representation, which re-
mains di�cult to select.

The main goal of our research is to propose an improved method (i) which accounts
for the �nite size of the interacting surfaces, (ii) accounts for the uncertainties related to
these surface topologies, (iii) in which the minimum wave length selection is physically
based, and (iv) in which the validity of the asperity-based theories is demonstrated.

From the topology measurements of MEMS samples, an analysis of the power spectral
density function is carried out to determine the minimum relevant wave length for the
problem of interest (here capillary stiction). We also show that at this scale of interest
the asperity-based theories remain valid for polysilicon materials.

Moreover, instead of considering in�nite surfaces as in the Nayak approach, a set of
surfaces, whose sizes are representative of the MEMS structure, is generated based on the
approximated power spectral density analysis and using the Monte Carlo method. From
this description of the contacting surfaces, the adhesive contact forces can be evaluated
by applying the asperity contact theories, leading to a probabilistic distribution of the
adhesive contact forces.

In addition, as the contact forces are rooted from the micro-scale adhesive forces,
while their consequence, stiction, happens at the macro-scale of the considered device,

†PhD candidate at the Belgian National Fund for Education at the Research in Industry and Farming
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the multi-scale nature of the phenomenon is accounted for. To predict this macro-scale
behavior in a probabilistic form, the uncertainty quanti�cation process is coupled with
a multiscale analysis.

Key words: Asperity contact, multiscale contact, random �eld, stiction, surface topo-
graphy.
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Abstract

Mathematical modeling of electric devices and nanoelectronics systems, involving
parameters with uncertainty, results in stochastic coupled problems. In a multi-physical
framework, such systems can be partitioned into subsidiary problems, and then solved
numerically by co-simulation techniques. A key challenge in the formulation and im-
plementation of stochastic, coupled problems is to facilitate the communication between
subproblems at every iteration. Therefore, the proposed method �rst uses a Karhunen-
Loève Expansion (KLE) in order to reduce the number of random variables and then, for
such a reduced representation, each subproblem is solved by the Stochastic Collocation
Method (SCM) in order to determine the coe�cient of a Polynomial Chaos Expansion
(PCE). Finally, we provide an example relevant to electronic engineering.

Keywords: stochastic coupled problems, polynomial chaos, stochastic collocationmethod
MSC 2010: 60G15, 60G60, 60H10, 60H15, 60H30

1 Problem settings and preliminary results

In today’s applications, the modelling and simulation of coupled systems is necessary because
of the progressive miniaturization and the increasing complexity of components in electronic
systems. In such kind of systems, some parameters often exhibit uncertainties. In this paper,
the PCE with the SCM [1] is used for the uncertainty propagation in the coupled problem
consisting of DAEs and PDEs subproblems with uncertain geometrical/material parameters.

In a multi-physical framework, the Field/Circuit system, shown on Figure 1(a), can be
easily partitioned into a set of coupled index-1 DAEs of subsystems [2] and then, taking into
account that random variables ξ ,ζ ∈ L2 (Ω,F ,P) it can be written in the semi-explicit form
as
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ẏi = fi (y,z,ξ ), 0 = gi (y,z,ζ ), i = 1, . . . ,r ,
where f = (f1, . . . , fr )>, g = (g1, . . . ,gr )> and ∂gi/∂zi is nonsingular. The �rst subsystem
results from the application of FE analysis to the nonlinear curl-curl equation, equipped with
a circuit coupling equation, while the second one comes from a modi�ed nodal analysis [3].

(a) Recti�er circuit with four lumped diodes. (b) FEM model of a transformer [4].

Figure 1: Nonlinear Field/Circuit con�guration.

The FEM model, shown Fig.1(b), is excited by u (t ) = 220 sin(ωt ) V, where ω = 2π kHz.
The only values that are taken subject to variations are R, C and the reluctivity v : R (ξ2) =
R0[1+0.1ξ2],C (ξ3) = C0[1+0.05ξ3] andv (ξ1) = v0[1+0.03ξ1], where ξ j ∈ [−1,1] for j = 1,2,3
are independent uniformly distributed random variables. In a more realistic situation for a
large number of sources of uncertainty in the �eld model, a KLE will be required.

(a) Voltage at the load resistance. (b) Mean ūR and ūR ± 10σ of
voltage at the load resistance.

Figure 2: Results of deterministic and stochastic modeling.
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Abstract

In [3] Tropp established a way to construct optimal packings in a metric space through
alternating projection. While the method worked well, its main drawback was its slow
convergence. In this paper we develop a method to accelerate the convergence of the
method. Keywords: alternating projection, iterativemethod, projective spaces, quasi-Newton

method

1 Introduction

Ways to construct optimal packings in a metric space have been widely studied for centur-
ies. Applications can be found in a wide range of �elds (see [2] and references therein). The
existence of a solution to the optimal packing problem is guaranteed due to the use of a com-
pact metric space and a continuous objective function. This does not mean however that the
solution can be found easily as the problem is highly non-convex.
In [3] a method was developed that constructs packings in Grassmannian manifolds equipped
with several di�erent metrics using an alternating projection method, a method �rst mooted
by von Neumann [4]. An alternating projection method between two closed, convex subsets
of a Hilbert space is guaranteed to converge to a point in their intersection (if such a point ex-
ists) [1]. However, in the case of the optimal packing problem this hypotheses is not satis�ed
as only one of the spaces is convex, although both are compact. This means that convergence
is not certain from a theoretical point of view.
While the packings that were obtained in [3] were very satisfactory, the authors indicated
that one of its drawbacks was its slow convergence. In this paper we address that shortcom-
ing. We do this by reformulating the original mathematical problem as a root-�nding problem
which can be solved with a quasi-Newton method of which we propose two variants, based
on Broyden’s method. Using this approach we note that two distinct convergence histories
can occur for all three algorithms (the original one by Tropp [3] and our two quasi-Newton
methods): either convergence is (nearly) monotonous, or after a number of iterations con-
vergence stalls, by which we mean that the norm of the di�erence between two consecutive
iterates stays (nearly) constant for a long time (sometimes even for more than a thousand
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iterates).
When convergence is monotonous our algorithm required fewer iterations for convergence
than the original algorithm, with typical reductions of 50 to 75%. When the convergence stalls,
the modi�cation does not help. Stalls seem entirely dependent on the initial (random) iterate
that is generated using the method proposed by Tropp [3]. Encouraged by the possible gain,
we allow the new algorithm to restart from a new initial iterate whenever a stall is detected.
Numerical experiments con�rm that this improves the overall performance of the algorithm.
We illustrate this in �gure 1 for a three-dimensional vector space.

2 Tables and Figures
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Figure 1: Mean number of iterations needed for convergence of the three algorithms (the
original one by Tropp and our two Broyden-based methods) as a function of the number of
1D subspaces (N ) in a 3D vector space.
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Abstract

In this work an approximate mathematical model for global convergence of a Multi-
dimensional Coe�cient Inverse Problem (MCIP) is considered.

Key words: Global convergence, coe�cient inverse problem, parabolic problem.

Introduction

In this work an approximate mathematical model for global convergence of a Multidimen-
sional Coe�cient Inverse Problem (MCIP) related to following parabolic problem

{

ut = D∆u − a(x )u in Rr × (0,∞), D > 0;
u (x ,0) = δ (x − x0) for x ∈ Rr , r ∈ {1,2,3} (1)

is considered. The unknown coe�cient a(x ) satis�es the following conditions: 0 ≤ a(x ) ≤ b,
x ∈ Rr ; a |Ωc ≡ 0. Thus, the MICP can be posed formally on Ω ⊂ Rr as follows:

Suppose that the di�usion coe�cient D = const. > 0 is known. Determine the coe�cient
a(x ), x ∈ Ω, assuming that the function д(x ,t ) is known for a �xed source position at x0 < Ω:

u (x ,t ) = д(x ,t ), ∀(x ,t ) ∈ ∂Ω × (0,∞).

As we see above the MCIP is studied with the data resulting from a single measurement situ-
ation. The most important property of the proposed approach is that we do not need any
information about true solution inside the domain Ω. Because of this reason the numerical
algorithm presented here is called approximately globally convergent. An important part of
our technique is based on so called tail functions estimation. According to our approximate
globally convergent theorem, the accuracy of the solution strongly depends from the accur-
acy of the reconstruction of the tail function. Here in order to estimate tail functions, we
use asymptotic behavior of the laplace transformation of the solution of direct problem (1).
Such techniques are frequently used in science for example we refer to the geometrical optics
assumption. In the literature, it is well known that the globally convergent method for MCIP
related to hyperbolic PDE with single measurement data is proposed in detail in [1]. Here the
same method is considered for parabolic equation case.
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Abstract

Momentum interpolation methods for unsteady low Mach number �ow calculations
are re-examined to allow for solution of low Mach number Riemann problems.

Key words: Godunov-type schemes, Low Mach number, Momentum interpolation, Rhie-
Chow interpolation

1 Introduction

Considering compressible �ows calculation, accuracy and robustness of numerical methods
with co-located arrangement of the unknowns depend heavily on the way of interpolation on
the cell faces. Broadly speaking, there are two types of interpolation methods: (1) Godunov-
type methods, which are derived from the characteristic equations ; (2) momentum interpol-
ation methods, often associated with the pioneering work by Rhie and Chow [6], which are
derived from the momentum equation. To the best of our knowledge, Godunov-type schemes
only are used for solving shock-tube-like problems. Thus, our goal is to explore the pos-
sibility of adapting the momentum interpolation method to deal with this kind of problems.
Several aspects of the relation between Godunov-type schemes and Rhie-Chow-like methods
are investigated on this occasion.

2 Rhie-Chow-like interpolation method

A 1-D �ow of air governed by the Euler equations is considered. First-order accurate �-
nite volume formulation based on the Euler explicit time integration is used to discretize the
equations. First, the existing variants of momentum interpolation suitable for unsteady cal-
culations are recalled. They share the common feature that, if a steady state is reached, this
solution does not depend on the time-step [3, 4, 5]. Their ability to properly capture smooth
unsteady low Mach number solutions with acoustic waves was evidenced in [4]. Their ability
to deal with �ows exhibiting discontinuities is investigated in the present study.
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3 Low Mach number Riemann problems with nearly incom-
pressible initial conditions

As a �rst step, Riemann problems with jumps in density, velocity and pressure that are small
with respect to the reference Mach number Mr of the �ow, are considered. More precisely, the
pressure and density jumps between the right and left states scale as M2

r , and the velocity jump
scales as Mr. Such initial conditions are often referred to as "well-prepared" and correspond
to nearly incompressible �ow. The solutions of these Riemann problems were studied by low
Mach number asymptotic analysis in [2], and the behaviour of Godunov-type schemes for
these problems was studied in [1, 2].

First, the inability of the Rhie-Chow-like interpolation method to capture weak discon-
tinuities is evidenced. Some paths of improvement are explored, which are based on the
analysis of the possibility of transposition of Godunov-type methods recipes.
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Abstract

Inter and intra-laminar damages in laminated composites made up of woven fabric
plies are considered. Simulation, carried out with the SAMCEF �nite element code, is
compared to experimental results and validations are done at the coupon level.

Key words: woven fabrics, damage models, laminar, SAMCEF

Inter and intra-laminar damage models for woven fabrics

Inter and intra-laminar damages in laminated composites made up of woven fabric plies are
considered. Simulation, carried out with the SAMCEF �nite element code, is compared to
experimental results and validations are done at the coupon level. The material model for the
intra-laminar damage is based on continuum damage mechanics [1, 2]. In the laminate made
of homogenous plies, damage variables impacting the sti�ness of each ply are associated to
the di�erent failure modes and represent the �ber breaking, matrix cracking and de-cohesion
between �bers and matrix. A speci�c identi�cation procedure is used to determine the values
of the damage model parameters.

This procedure is based on test results at the coupon level. It allows determining not only
the elastic properties but also the value of the parameters describing the non-linear behavior
of the material, including non-linearity in the �ber direction, as well as damage and plasticity
in the matrix. The material parameters are then validated by comparing test and simulation
results on a stacking sequence not used for the identi�cation. In Figure 1, the identi�cation is
done on a balanced [45]n laminate, while the validation is carried out on a [67.5]n laminate.

The cohesive elements approach is used for modeling the inter-laminar damage, that is
delamination. A damage model is assigned to some interface elements inserted between plies
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Figure 1: Left: identi�cation on a [45]n; right: validation on a [67.5]n

to represent their possible de-cohesion and a fracture criterion is used to decide on the inter-
laminar crack propagation [3]. It is demonstrated here that, in general applications, modeling
delamination alone is not enough, concluding that it is essential to model the damage inside
the plies besides the damage at their interface. This is illustrated for the ENF (End Notched
Flexure) test case, as depicted in Figure 2, in which simulation is compared to the test results.
In Figure 2, the dashed line represents the constant slope characterizing the beam sti�ness
when only delamination is taken into account. In reality, the ply is also damaged during the
loading. When the simulation takes this e�ect into account, there is a good agreement with
the experimental results.

Figure 2: Left: DCB problem with 45◦ interfaces; right: ENF problem with 45◦ interfaces
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Abstract

Computing electromagnetic waves in complex geometries have to face the problem
due to using of small size elements in the generated meshes. This a�ect convergence
criteria of explicit numerical schemes. This paper presents a multirate technique to im-
prove and optimize the time step of Runge-Kutta or Leap Frog numerical schemes. This
technique is developed for accelerating explicit discontinuous Galerkin computations of
time domain Maxwell equations. An application example is proposed to show e�ciency
of this technique to simulate wave propagation on human skull geometry.

Key words: Discontinuous Galerkin method, Explicit numerical schemes, Maxwell equa-
tions, Multirate technique

1 Introduction

Today due to increasing development of electromagnetic applications and devices, we need
implementation of e�cient tools to solve Maxwell equations in complex geometries. The
meshes used for computation on complex geometries contain elements of small size that af-
fect convergence properties and increase the computational cost of the classical numerical
techniques such as �nite di�erence method, �nite element method or �nite volume method.
The discontinuous Galerkin methods are introduced to improve spatial discretization on small
size elements thanks to the parametrization rules. These methods are suitable for parallel
computing. Numerical schemes such as Leap Frog or Runge-Kutta are often implemented for
explicit computations in time domain. Unfortunately the presence of small size mesh ele-
ments impose to reduce the time step. In this article a multirate approach is presented in
order to optimize the time step of explicit schemes. This technique is recently proposed for
accelerating computations of geophysical �ows with a nodal discontinuous Galerkin method.
An illustration example on a human skull geometry is presented. It consists on evaluating
the speci�c absorption rate of a human skull when the incident �eld is a modulated gaussian
pulse. It shows gain of computational cost on simulations in comparison of those performed
with a classical CFL (Courant-Friedrichs-Lewy) condition.
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2 Multirate approach on skull geometry

In this paper we will show results obtained for a 3D tetrahedral mesh with a 3rd order spatial
discretization. Due to the gap between the smallest and largest acceptable explicit time step,
classical singlerate time integration techniques are ine�cient. The multirate strategy consists
in gathering mesh elements in appropriate groups which are stable for a certain range of time
steps. Bulk groups, were a classical explicit Runge-Kutta method is used, are separated by
bu�er groups that accommodate the transition between them by means of adapted methods
to maintain important properties such as consistency, convergence, conservation, ... For high
order spatial discretization we will use a third order multirate strategy originally developed
by Schlegel et. al in [1] and adapted for the discontinuous Galerkin framework in [2]. Due to
the high number of degrees of freedom it is required to use parallel computers. However, in
a multirate strategy, mesh elements have a di�erent workload depending on their multirate
group. The challenge is to build a mesh partitioning such that the workload is well balanced at
every stage of the multirate algorithm while the communication overheads are minimized [3].

(a) Skull geometry of a human body (b) Surfacic distribution of electric �eld

Figure 1: Electric gaussian modulated pulse propagated on skull surface .
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Abstract

Inverse problems arise from indirect observations of parameters of interest. The
Bayesian approach to inverse problems formalizes the characterization of these para-
meters through exploration of the posterior distribution of parameters conditioned on
data. This lecture will focus on two complementary e�orts to make the Bayesian solu-
tion of inverse problems more computationally tractable. First, we will discuss principled
approximations of the forward model or likelihood function, and the approximate (or in
some cases exact) posterior distributions they induce. Then we will discuss dimension
reduction schemes that lead to approximate factorizations of the posterior distribution,
designed to improve the e�ciency of posterior sampling in high dimensions.

Key words: Bayesian inference, inverse problems, approximation theory, model reduc-
tion, Markov chain Monte Carlo, dimension reduction, Rao-Blackwellization

Introduction

Predictive simulation of complex physical systems increasingly rests on the interplay of ex-
perimental observations with computational models. Inference from observational data has
become an essential task in �elds ranging from subsurface modeling to weather prediction. In
this context, Bayesian statistics provides a natural framework for treating inverse problems—
by quantifying uncertainty in parameter estimates and model predictions, fusing heterogen-
eous sources of information, and optimally planning experiments or selecting observations.
Yet the computational expense associated with rigorous Bayesian methods presents signi�c-
ant bottlenecks in large-scale inverse problems.

This lecture will cover approximation methods designed to make the Bayesian solution
of inverse problems more computationally tractable. We will address this challenge from two
directions: �rst, by developing approximations of the forward model or likelihood function;
and second, by understanding and exploiting the structure of the posterior distribution in
high dimensions.

Approximating the forward model

Exploration of the Bayesian posterior distribution, whether using Markov chain Monte Carlo
(MCMC) methods or other sampling schemes, requires repeated evaluations of the likeli-
hood function and hence the forward model or parameter-to-observable map. An important
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strategy for mitigating this cost is to recognize that the forward model may exhibit regularity
in its dependence on the parameters of interest, such that the model outputs may be approxim-
ated with fewer samples than are needed to characterize the posterior via MCMC. Replacing
the forward model with an approximation or “surrogate” decouples the required number of
forward model evaluations from the length of the MCMC chain, and thus can vastly reduce
the overall cost of inference.

We will begin by discussing sparse polynomial expansions [10, 11, 12] as well as projection-
based reduced order models [6] that are useful when the forward model comprises a large set
of di�erential equations. Both yield surrogate posterior densities that can be evaluated at
reduced online computational cost. Convergence results [14, 12] describe the error in the
posterior distribution induced by error in the forward model approximation; alternatively,
exact sampling of the posterior distribution can be achieved via multi-stage (e.g., delayed
acceptance) MCMC schemes [2].

While it is natural to construct forward model approximations over the support of the
prior distribution, more e�cient approaches seek accuracy with respect to the posterior dis-
tribution, which typically concentrates on a small fraction of the prior support. In this setting,
forward model approximations can be constructed iteratively, in conjunction with MCMC or
importance sampling. We will present a method for constructing polynomial approximations
with respect to a posterior-focused biasing distribution identi�ed via a stochastic optimization
procedure [9]. One speci�c instantiation �nds a Gaussian approximation q of the posterior
π , optimal in the sense of minimizing the right-sided Kullback-Leibler divergence DKL (π ‖q),
then constructs a polynomial approximation of the nonlinear forward model with respect toq,
yielding a surrogate posterior distribution that accurately captures the non-Gaussian features
of π .

Finally, we will discuss a recently-developed framework that constructs local likelihood
approximations within the Metropolis-Hastings kernel, borrowing ideas from derivative-free
optimization and experimental design [3]. This work departs from previous work in surrogate-
based inference by exploiting useful convergence characteristics of local approximations. We
prove ergodicity of the resulting approximate Markov chain and show that it samples asymp-
totically from the exact posterior distribution of interest. Variations of the algorithm can
employ either local polynomial approximations or local Gaussian process regression, thus
spanning two widely used function approximation schemes.

Approximating the prior-to-posterior update

Approximating the forward model or likelihood may mitigate the cost of each sampling step,
but generating high-quality posterior samples—particularly for the high-dimensional para-
meter spaces that result from discretizing an underlying function of space and/or time—requires
that we understand the structure of the posterior distribution. The intrinsic dimensionality
of an inverse problem is a�ected by prior information, the accuracy and number of observa-
tions, and the smoothing properties of the forward operator. From a Bayesian perspective,
changes from the prior to the posterior are, in many problems, con�ned to a relatively low-
dimensional subspace of the parameter space. In the second half of the lecture, we will discuss
ways of characterizing and exploiting this kind of low-dimensional structure.

We �rst present some results in the linear-Gaussian setting, where the posterior covari-
ance matrix can be approximated as a low-rank update of the prior covariance matrix [13].
We prove optimality of a particular update, based on the leading eigendirections of the matrix
pencil de�ned by the Hessian of the log-likelihood and the prior precision, for a broad class
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of loss functions typi�ed by the Förstner metric [8] for symmetric positive de�nite matrices.
These loss functions emphasize directions where the relative reduction in variance, from prior
to posterior, is greatest. They are naturally generalized to optimality statements between dis-
tributions, e.g., optimality in Kullback-Leibler divergence and Hellinger distance.

Next, we extend this idea to inversion with nonlinear forward models and Gaussian pri-
ors [6]. We present a dimension reduction approach that de�nes and identi�es a “likelihood-
informed subspace” (LIS) by characterizing the relative in�uences of the prior and the like-
lihood over the support of the posterior distribution. This identi�cation facilitates compu-
tationally useful decompositions of the posterior. In particular, we approximate the pos-
terior distribution as the product of a lower-dimensional posterior de�ned on the LIS and
the prior distribution marginalized onto the complementary subspace. Markov chain Monte
Carlo sampling can then proceed in lower dimensions, with signi�cant gains in computational
e�ciency. We also introduce a Rao-Blackwellization strategy that de-randomizes Monte Carlo
estimates of posterior expectations for additional variance reduction.

Finally, we connect the notion of the likelihood-informed subspace to exact and dimension-
independent posterior sampling schemes �rst proposed in [4, 1]. We describe an MCMC
scheme that separates the parameter space into a �nite-dimensional LIS and its in�nite-
dimensional complement [5]. The distribution on the in�nite-dimensional complement is
mainly determined by the Gaussian prior, and thus dimension-independent algorithms that
rely on the prior covariance kernel in the proposal can mix quite e�ectively.

Numerical examples illustrating these techniques will range from X-ray tomography
and atmospheric remote sensing to large-scale inverse problems involving partial di�eren-
tial equations, including an ocean general circulation model.

Topics covered in this lecture represent joint work with Patrick Conrad, Tiangang Cui,
Patrick Heimbach, Kody Law, Jinglai Li, James Martin, Habib Najm, Natesh Pillai, Aaron
Smith, Alessio Spantini, Antti Solonen, Luis Tenorio, Karen Willcox, and Dongbin Xiu.

Acknowledgements

This work is supported by the United States Department of Energy, O�ce of Advanced Sci-
enti�c Computing Research (ASCR), via the Scienti�c Discovery through Advanced Comput-
ing (SciDAC) program and the Applied Mathematics program.

References
[1] A. Beskos, G. O. Roberts, A. M. Stuart, J. Voss, MCMCmethods for di�usion bridges, Stochastic Dynamics,

8:319–350, 2008.

[2] J. A. Christen and C. Fox, MCMC using an approximation, Journal of Computational and Graphical Stat-
istics, 14(4):795–810, 2005.

[3] P. Conrad, Y. Marzouk, N. Pillai, A. Smith, Asymptotically exact MCMC algorithms via local approxima-
tions of computationally intensive models, submitted, 2014. arXiv:1402.1694.

[4] S. L. Cotter, G. O. Roberts, A. M. Stuart, D. White MCMC methods for functions: modifying old al-
gorithms to make them faster, Statistical Science, 28:424–446, 2013.

[5] T. Cui, K. J. H. Law, Y. Marzouk, Dimension independent likelihood-informed MCMC, submitted, 2014.

page 133 of 223 ISBN: 978-9-08223-090-1 ACOMEN©2014
[paper 62]



[6] T. Cui, J. Martin, Y. Marzouk, A. Solonen, and A. Spantini, Likelihood-informed dimension reduction for
nonlinear inverse problems, Inverse Problems, in press, 2014. arXiv:1403.4680.

[7] T. Cui, Y. Marzouk, K. Willcox, Data-driven model reduction for the Bayesian solution of inverse problems,
Int. J. Num. Meth. Eng., in press, 2014. arXiv:1403.4290.

[8] W. Förstner and B. Moonen, A metric for covariance matrices, in Geodesy: The Challenge of the 3rd
Millennium, Springer, 2003, 299–309.

[9] J. Li and Y. M. Marzouk, Adaptive construction of surrogates for the Bayesian solution of inverse problems,
SIAM Journal on Scienti�c Computing, in press, 2013. arXiv:1309.5524.

[10] Y. M. Marzouk and H. N. Najm, Dimensionality reduction and polynomial chaos acceleration of Bayesian
inference in inverse problems, Journal of Computational Physics, 228(6):1862–1902, 2009.

[11] Y. M. Marzouk, H. N. Najm, and L. A. Rahn, Stochastic spectral methods for e�cient Bayesian solution of
inverse problems, Journal of Computational Physics, 224(2):560–586, 2007.

[12] Y. M. Marzouk and D. Xiu, A stochastic collocation approach to Bayesian inference in inverse problems,
Communications in Computational Physics, 6(4):826–847, 2009.

[13] A. Spantini, A. Solonen, T. Cui, J. Martin, L. Tenorio, Y. Marzouk, Optimal low-rank approximations of
Bayesian linear inverse problems, submitted, 2014.

[14] A. M. Stuart, Inverse problems: a Bayesian perspective, Acta Numerica, 19:451–559, 2010.

page 134 of 223 ISBN: 978-9-08223-090-1 ACOMEN©2014
[paper 62]



Book of abstracts of the 6th International Conference
on Advanced Computational Methods
in Engineering, ACOMEN 2014
23–28 June 2014.

The e�ect of exponential �tting
on the stability of numerical methods

for solving �rst order IVPs

Marnix Van Daele∗1, Manuel Calvo2, Juan I. Montijano2 and Luis Rández2

1 Vakgroep Toegepaste Wiskunde en Informatica, Universiteit Gent, Krijgslaan 281-59. B9000
Gent, Belgium.

2 IUMA-Departamento Matemática Aplicada, Universidad de Zaragoza. 50009-Zaragoza, Spain.

e-mails: Marnix.VanDaele@UGent.be, calvo@unizar.es, monti@unizar.es,
randez@unizar.es

Abstract

It will be shown that the stability of the EF methods for solving �rst order IVPs de-
pends strongly on the choice of the �tting space. We will in particular focus on the fact
that the traditional choice to include 〈exp(ω x ), exp(−ω x )〉 with ω ∈ R in the �tting
space may drastically reduce the size of the stability region of the EF method in compar-
ison with the original method.

Key words: Exponential �tting, Stability
MSC 2010: 65L07

1 Introduction

Many numerical methods are available for the solution of initial value problems which take
advantage of special properties of the solution. In particular much e�orts have been con-
centrated on the development of techniques for problems with oscillatory and/or exponen-
tial solutions. These methods, relying on pioneering work by Gautschi [1] and nowaways
commonly called Exponentially-Fitted (EF) methods (see [2] and references therein for an ex-
cellent overview), are designed to numerically integrate the problem up to machine accuracy
whenever the solution is in a so-called �tting spaceS. An example of a frequently used �tting
space is S = 〈cos(ν x ), sin(ν x ), 1, x , . . . , xp−2〉. Various kinds of methods were constructed
for di�erent types of problems in the past years but they all have in common that both the
trigonometric and the exponential case can be treated in one framework by replacing ν by
ω = i ν , i.e. the �tting space always contains 〈exp(ω x ), exp(−ω x )〉 where ω is either real or
purely imaginary. In fact, a unifying approach to cover both cases has been introducted by
Ixaru (see e.g. [3]).

The purpose of the talk is to show that the linear stability properties of an EF method
depend to a large extent on the choice of the �tting space S. In particular, we will show that
the traditional choice to include 〈exp(ω x ), exp(−ω x )〉, ω ∈ R in S can be a very poor choice,
as far as stability is concerned, especially for methods with a �nite region of stability.
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2 The linear stability of (a,b)-EF methods

We consider the more general class of EF methods for which the �tting space S contains
〈exp(ω x ), exp(θ x )〉. Since we want to obtain real solutions when solving real linear prob-
lems, ω and θ are allowed to be both real or complex conjugate. For a classical method, the
coe�cients are constant. The coe�cients of EF methods however depend upon the products
a = ω h and b = θ h whereby h is the (constant) step size of the method; a and b are called the
�tting parameters of the method. We will call a method that is �tted to a and b an (a,b)-EF
method.

The application of an (a,b)-EF method to the test equation y ′ = λy, y (0) = 1 with
step size h results in a linear recursion relation for the numerical solution {yn |n = 0, 1, . . .}
whereby the coe�cients depend upon a, b and z = λh. The numerical solution will be stable
i� all roots of the corresponding characteristic equation have modulus at most equal to 1 and
if those of modulus 1 are simple. The region R in the complex z-plane for which the stability
condition is satis�ed is called the region of stability of the method. Every (a,b)-EF method
thus has its own region of stability R (a,b ) . For well chosen combinations (a,b), the stability
region R (a,b ) may become much larger and may even grow from a �nite region to an in�nite
one, while for badly chosen combinations (a,b) the region R (a,b ) may shrink with respect to
the original R (0,0) .

As an example, let us consider two kinds of (a,b)-EF variants of the well-known two-step
Adams-Bashforth method: (a,b) = (a,−a) and (a,b) = (a,a), a ∈ R. For both kinds, we have
drawn the boundaries of stability regions R (a,b ) in Figure 1 for some values of a. The region
of stability itself is the inner (bound) region of the corresponding curve. One notices that for
the (a,−a)-EF versions the region shrinks as a increases, while for the (a,a)-EF versions, the
stability region grows as a gets more negative.
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Figure 1: Boundary of stability regions of the (a,b)-EF two-step Adams-Bashforth method
with b = −a (left) and b = a (right) whereby a = −5, −3, −1 and 0.
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Abstract

The peer methods for the numerical solution of Initial Value Problems (IVP) in or-
dinary di�erential systems were introduced by R. Weiner et al to solve di�erent types
of IVPs either in sequential or parallel computers. In this work, we study exponentially
�tted two-stage and three-stage peer schemes that are able to �t spaces with dimension
four and six respectively. Analysis of the stability on the real and imaginary axes is also
given.

Key words: Explicit peer methods, Exponential �tting
MSC 2010: 65L06, (65L20)

1 Introduction

We consider the numerical solution of IVPs for �rst order di�erential systems

d
dt y (t ) = f (t ,y (t )), t ∈ [t0,t0 +T ], y (t0) = y0 ∈ Rm , (1)

with a su�ciently smooth vector �eld f (t ,y) where some knowledge of the behaviour of their
unique global solution is known in advance. In the case that the solution of (1) has an oscillat-
ory behaviour and further we know an estimate of the frequency, some modi�ed Runge-Kutta
(RK) methods using this information, usually called trigonometrically �tted or more gener-
ally exponentially �tted methods [2, 3, 6], have been proposed to improve their accuracy and
e�ciency over standard RK methods that are based on a polynomial approximation of the
local approximation at each point.

For explicit RK methods the stage order is limited to one and this implies serious restric-
tions in the dimensionality of the �tting space. On the other hand, linear multistep methods
do not have such a limitation, as shown for example in the early paper of Gautschi [2]. In this
case, with k steps, a method can be �tted to k + 1 dimensional spaces.

Here, we consider explicit two step peer methods introduced by R. Weiner, et al [4, 5] as
an alternative to classical Runge–Kutta (RK) and multistep methods attempting to combine
the advantages of these two classes of methods.
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In this work �tted two-stage and three-stage peer methods based on the previous schemes
given in [1] to some �tting spaces are constructed and also a study of the stability on the real
and imaginary axes is also given.

Some numerical experiments are presented to show the performance of the above �tted
methods for problems with oscillatory solutions. The proposed methods are compared to
exponentially �tted Adams-Bashforth-Moulton methods with the same order.
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Abstract

The convergence of a family of AMF-Radau methods for the time integration of evolu-
tionary Partial Di�erential Equations (PDEs) of Advection Di�usion Reaction type semi-
discretized in space is considered. The methods are based on very few inexact Newton
Iterations of Aproximate Matrix Factorization type (AMF) applied to the two-stage Radau
IIA method and allow a cheap implementation. Furthermore, they have given competit-
ive results when compared with other methods in the literature. Uniform bounds for the
global time-space errors on semi-linear PDEs when simultaneously the time step-size and
the spatial grid resolution tend to zero are derived. Numerical illustrations supporting
the theory are presented.

Key words: Evolutionary Advection-Di�usion-Reaction PDEs, Approximate Matrix Fac-
torization, Runge-Kutta Radau IIA methods, Convergence.

1 AMF-Radau methods

Time integration schemes for Initial Value Problems in systems of ordinary di�erential equa-
tions (ODEs)

y ′h (t ) = fh (t ,yh (t )), yh (0) = u∗0,h , 0 ≤ t ≤ t∗, yh , fh ∈ Rm (h) , h → 0+, (1)

are proposed. The system (1) is assumed to come from the spatial semidiscretization of an
l−dimensional (typically 1 ≤ l ≤ 3) Advection Di�usion Reaction problem in time depend-
ent Partial Di�erential Equations (PDEs), with prescribed Boundary Conditions and an Ini-
tial Condition. A time-integration method combining the Approximate Matrix Factorization
approach [2] and the Radau IIA method was proposed in [3], whereas a variable stepsize in-
tegrator based on this method was successfully tested in [1] on several non-academic 2D and
3D problems (e.g., 2D and 3D combustion model, a 2D radiation-di�usion problem and a 3D
Burgers-type problem). By assuming that the Jacobian matrix J can be split as J = ∑d

j=1 Jj
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(typically the matrices Jj possess a banded structure), we consider a more general family of
methods of the form

Predictor: Y 0
n ≡ (Y 0

n,i )
2
i=1 = e ⊗ yn ,

q Iter.: (I ⊗ I −Tν ⊗ τP ) (Y ν
n − Y ν−1

n ) = Dν−1
n , 1 ≤ ν ≤ q,

Corrector: yn+1 = Y
q
n,2.

(2)

where the matricesTν might change with the iterations, but sharing the same one-point spec-
trum. Above, P is certain matrix ful�lling P − J = O (τ ) and Dν−1 = e ⊗ yn − Y ν−1

n + τ (A ⊗
Im )F (tne + cτ ,Y

ν
n ) is the residual de�ned by the two-stage Radau IIA formula. Moreover, the

matrices Tν can be selected in order to increase the order of convergence and for stability
requirements.

2 Selected methods and error estimates

We consider a convergence analysis for AMF-Radau methods (2) on semi-linear problems
y ′h (t ) = fh (t ,yh ) := Jhyh (t ) + дh (t ). The time-space global errors ϵn ful�l the recurrence
ϵn+1 := uh (tn+1) − yn+1 = Rq (τ J1, . . . ,τ Jd )ϵn + l (tn ,τ ,h),where ln ≡ l (tn ,τ ,h) := uh (tn+1) −
ymet (tn ,uh (tn ),τ ) are the time-space local errors and Rq (z1, . . . ,zd ) is the linear stability func-
tion of the method. For AMF-Radau methods (2) based on just q = 1 iteration we have that
ln = τ

2 (eT2 (A − T1)c ) · (Ju ′h (tn )) + O (τ 3) + O (τhr ) and we consider an AMF-Radau-1it with
matrixT1 selected according to the conditions (A−T1)c = 0,σ [T1] = {γ}. The original method
AMF-Radau-3it [3, 1] based on q = 3 iterations does not ful�l this latter condition since the
matrices T1 = T2 = T3 = T where given by eT2 (I2 − T −1A) = 0T , σ [T ] = {

√
6/6}. Further-

more, we select an AMF-Radau-2it method with matricesT1 andT2 as for AMF-Radau-1it and
AMF-Radau-3it, respectively. The time-space global errors provided by an AMF-qit method
then ful�l ϵn+1 := uh (tn+1)−yn+1 = Rq (τ J1, . . . ,τ Jd )ϵn +l (tn ,τ ,h) and realistic error estimates
of the form ϵn = O (τp1 ) + O (hr ) + O (τp2hp3 ), τ ,h → 0+, will be presented and numerically
checked both for time-independent and time-dependent boundary conditions.
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Abstract

The Matslise 2.0 software package is a thorough revision of the successful Matlab
package Matslise of 2005. The purpose of the package is to compute the eigenvalues
and eigenfunctions of regular and singular Sturm-Liouville boundary value problems.
The code uses some new or improved algorithms, o�ers some new features, and has an
updated graphical user interface. We discuss the algorithms and illustrate that the code
forms a powerful Matlab Sturm-Liouville solver for a very wide range of problems.

Key words: Sturm-Liouville Problems, Schrödinger equations, eigenvalues, shooting

1 Introduction

Matslise [1] is a graphical Matlab software package for the interactive numerical study of
Sturm-Liouville problems (SLPs)

−(p (x )y ′(x ))′ + q(x )y (x ) = Ew (x )y (x ) x ∈ (a,b). (1)

It allows the fast and accurate computation of the eigenvalues E and the visualization of the
corresponding eigenfunctionsy by making use of the power of high-order piecewise constant
perturbation methods, also called the CP methods. Many researchers, in particular the ones
from applied �elds, prefer to use the user friendly problem solving environment Matslise
over Fortran subroutines, like SLEDGE and SLEIGN2, although these latter packages can deal
with a larger range of singular problems.

The successor code Matslise 2.0 has now been developed to work for a broad class of
singular problems. This is realized by including the recent extension of the CP algorithm from
problems in Liouville normal form to the general Sturm-Liouville form (see [2]) and by using
specially adapted algorithms in a narrow interval around the singularity. In addition, piece-
wise continuous coe�cient functions are allowed and the calculation of the eigenfunctions
has been improved in terms of numerical stability by rescaling the wave function variables
in each CP step. A new feature is the option to evaluate these eigenfunctions in a set of
user-speci�ed points, which facilitates further manipulation.

TheMatslise 2.0 package can be downloaded from http://sourceforge.net/projects/matslise/.
The package contains a number of routines which the user can run from the Matlab command
line or which can be invoked from user-written scripts or functions. Given the interest of re-
searchers from various �elds, a user-friendly graphical user interface is also provided. A broad
set of test problems has been prede�ned.
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Figure 1: Matslise 2.0 GUI

2 Some results

As an example of the use of Matslise 2.0, see Figure 1, we choose the Co�ey-Evans equation.
The triple well of the Co�ey-Evans potential produces triplets of eigenvalues which can be
made arbitrarely close by deepening the well. Here

−y ′′ + (−2β cos 2x + β2 sin2 2x )y = Ey (2)

with y (−π/2) = y (π/2) = 0. The parameter β controls the depth of the well, we have used a
value of β = 30, which may cause di�culties to SLP software.

In the presentation, also results for some singular problems will be shown. These results
illustrate the large applicability range of Matslise 2.0 and the e�ectiveness and accuracy of
the newly introduced algorithms for singular endpoints.
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Abstract

Geometric integration is the numerical integration of a di�erential equation, while
preserving one or more of its“geometric” properties exactly (i.e. up to rounding errors).
It is recognized that the preservation of geometric properties allows for a more accurate
long-time integration than with general-purpose methods. We explain how to obtain a
geometric integrator for the famous prey-predator Lotka-Volterra problem. We provide
Matlab programs, user manual and some typical examples.

Keywords: Conservative Lotka-Volterra system, Geometric Numerical Integrator, Hamilto-
nian system, integrator Matlab, prey-predator system.

Introduction In [1] it is shown that a conservative prey-predator Lotka-Volterra system is
de�ned by the ordinary di�erential equation:

ẋi = xi (ri +
n∑

j=1
ai jx j ), ai j = −ai j (1)

where i = 1, ...,n, and xi represents the number of individuals of species i . The coe�cients ai j
quantify the interaction between species. This system possesses at least an invariant, i.e., a
conserved quantity along any solution of the di�erential equation. We observe however that
invariants are rarely conserved by classical integrators (see for example �gure 1a).

It is explained in [1] how they are related to Hamiltonian systems, an important part of
geometric numerical theory. We explain this development and how to obtain a geometric
integrator for (1) which has a satisfactory long-time behaviour. We study some examples of
two-species models, before moving on to general population models for the interactions of n
species. We focus on the invariants of these problems over long time.

Geometric integration Geometric numerical integration forms an important class of nu-
merical integrators which have been well studied by many authors since the 1980s. One of
the most important books about the subject is [2] by E. Hairer, C. Lubich and G. Wanner.

Geometric integrators are methods that exactly (i.e. up to rounding errors) conserve
qualitative properties associated to the solutions of the system under study. A simple example
of property is the total energy of a physical system which has to be conserved. As for Lotka-
Volterra system, classical integrators are in general not able to preserve an invariant. Typically
they show a linear drift as in �gure 1(a).
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Figure 1: (a): Error in the invariant of a two-dimensional Lotka-Volterra system: classical
(ode45) and geometric integrator. (b): Maximum error in the invariant as a function of the
CPU time for a three-dimensional food-chain system over an interval of length 200: clas-
sical integrators (ode45 and ode113) and several geometric solvers (The letter "G" refers to
"Geometric" and the number that follows indicates the order of the corresponding method).

It turns out that the preservation of geometric properties (such as preservation of invari-
ant, symplectic and Poisson structure, symmetries, time-reversal symmetry or phase-space
volume) improves signi�cantly the quality of the solution and allows for a more accurate
long-time integration than with general-purpose methods.

Matlab implementation and numerical results We propose a Matlab implementation
of several geometric integrators for Lotka-Volterra systems (1). With these solvers the conser-
vation of the invariant is signi�cantly improved as shown in Figure 1(a). We illustrate the use
of our code with some typical examples of Lotka-Volterra systems. Figure 1b compare the re-
lative performance between integrators of the Matlab ode suite and with our implementation
for a three-dimensional food chain system.

The coding is close to the Matlab ODE suite (ode45, ode113, etc.) [3]. We discuss the
implementation, e.g., step size adaptation, compensated summation in order to reduce the
in�uence of round-o�, solution of the nonlinear system for the implicit method.

Acknowledgements This paper presents research results of the Belgian Network DYSCO
(Dynamical Systems, Control, and Optimization), funded by the Interuniversity Attraction
Poles Programme initiated by the Belgian Science Policy O�ce.

References
[1] P. Duarte, R. L. Fernandes, W. M. Olivia., Dynamics on the attractor of the Lotka-Volterra equation, Dif-

ferential Equations 149 (1998) 143–189.

[2] E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms for
Ordinary Di�erential Equations, 2nd ed. Springer (2005).

[3] L.F. Shampine, M.W. Reichelt, TheMATLABODE suite, SIAM Journal on Scienti�c Computing 18(1) (1997)
1–22.

page 144 of 223 ISBN: 978-9-08223-090-1 ACOMEN©2014
[paper 67]



Book of abstracts of the 6th International Conference
on Advanced Computational Methods
in Engineering, ACOMEN 2014
23–28 June 2014.

Random walks in Temporal Analysis of Products reactors

Denis Constales∗1

1 Department of Mathematical Analysis, Ghent University

e-mails: Denis.Constales@UGent.be

Abstract

We present and discuss our C++/Python software package “tapwalk” for modelling by
random walks the trajectories of individual gas molecules travelling under the Knudsen
regime in a Temporal Analysis of Products reactor.

Key words: Temporal Analysis of Products, random walks, Knudsen di�usion

1 Introduction

Temporal Analysis of Products (TAP) is a catalyst investigation technique pioneered by [1]
and based on a special research reactor, a cylindrical di�usion-only porous �xed-bed reactor
consisting of longitudinal zones, typically three, packed either with inert quartz or with a
porous active catalyst. This device is situated inside a high vacuum; a special valve is used
to inject into one end of the reactor a tiny amount of gas molecules — tiny with respect to
the number of active sites in the catalyst, so that the e�ect of a single pulse is insigni�cant —
and the exit �ux is monitored at the other end, which is kept open to the vacuum chamber,
using a mass spectrometer. The temporal distribution of outlet gas �uxes of both reactants
and products contains detailed information on the reactions occurring inside the catalyst, on
the order in which the products are obtained, etc. In this basic con�guration all has been de-
signed to let the reactor be modelled very accurately as a one-dimensional di�usion-reaction
system, see [2] for the general spatially one-dimensional theory of TAP reactors in the Laplace
domain.

In recent years, researchers have also run TAP experiments in which the active zone is
not purely as cylindrical slice, but is concentrated in a small particle, typically of spherical
shape. If the particle is centred on de reactor’s axis, the modelling can still be reduced to two
dimensions (longitudinal and radial) but the formal elegance of the 1D theory is lost.

In order to study quantitatively the e�ects of running TAP experiments with a single
particle, or maybe with several single particles at �xed positions inside the reactor, we have
developed the present random walk simulation software.

2 Software design

Computational speed is of the essence in random walk simulation, so we have opted to im-
plement the actual simulation software in C++, including the statistical analysis of the tra-
jectories, and to make these accessible from dedicated Python objects that encapsulate the
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C++ counterparts. With some extra wrapping code, the resulting Python script �les are quite
intuitive, e.g.,

import reactor

a = reactor.reactor(R=2.5e-3, L=25.4e-3, dx=0.005e-3, D=10e-3, seed=10000)

reactor.addball(a, x=0, y=0, z=12.7e-3 - 0.300e-3, r=0.250e-3, k=1e16)

reactor.addball(a, x=0, y=0, z=12.7e-3 + 0.300e-3, r=0.250e-3, k=1e16)

reactor.onebyone(a, 100000)

which creates the software representation of a TAP reactor 2.5mm in radius and 25.4mm in
length, where the random walk steps will be of 0.005mm each, with di�usivity 0.01m2 / s, and
with random number generator (which is gsl_rng_ranlxs2 from the Gnu Scienti�c Library)
seed value 1000 for reproducibility. Then two particles (ball-shaped) are de�ned, both on the
longitudinal axis (x = y = 0mm), of radius 0.25mm and with essentially in�nite reaction
rate constant k = 1016 s−1. The last line calls for 100000 random walks to be calculated, and
for each to output the time (in s) at which the simulated gas molecule either exits the reactor
(coded by L-1) or reacts with the �rst (coded D0) or the second (D1) particle. The initial output
is then

3.01643060e-03 D0

5.16434357e-03 D1

1.32416376e-02 D1

1.63681435e-02 D1

1.35098808e-02 D1

6.78213078e-03 L-1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08

D0
D1
L-1

and so on for 100000 lines; the corresponding cumulative exit and reaction probability dis-
tributions are plotted versus time in s alongside. The statistical descriptors (moments and
cumulants) of the distributions are calculated by the C++ layer internally.
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Abstract

Proper Orthogonal Decomposition is applied to a nonlinear dynamic population bal-
ance model of a novel crystallization process. A strong reduction of the system order is
achieved while the reduced model is in good agreement with the reference model. The
reduction method is promising for a large class of chemical engineering processes.

Key words: crystallization, empirical interpolation, model reduction, proper orthogonal
decomposition, population balance equations

Process and Reference Model

US
attenuator

crystallizer

product

Figure 1: Scheme of �uid-
ized bed crystallizer

The separation of enantiomers (molecules that are mirror im-
ages of each other) is a challenging problem with high relevance
especially in pharmaceutical industry. Recently, a new con-
tinuous process for enantiomer separation has been proposed
[1], whose key element is a �uidized bed crystallizer as shown
schematically in Figure 1. Supersaturated liquid solution �ows
through the crystallizer from bottom to top and causes seed-
ing crystals to grow. Small crystals move with the liquid �ow
to the top, larger crystals sink to the bottom. They are broken
into small fractions by a ultrasonic (US) attenuator and recycled
back into the crystallizer. An outlet at the side of the crystal-
lizer enables product removal.

The successful operation of this quite complex process re-
quires the adjustment of various geometrical and operation
parameters, like shape of the crystallizer tube, location of the
product outlet, or liquid �ow rates. A �rst model of the �uidized
bed crystallizer was presented in [2]. It describes the number
density function n of the particle phase by a population balance
equation with the following structure:

A(x )
∂n

∂t
= −A(x )G ∂n

∂L
− ∂
∂x

{

A(x )v (x ,L,t )n(x ,L,t ) − DA(x ) ∂n
∂x

}

(1)
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In (1), t is the time coordinate, x is an external (geometrical) coordinate in �ow direction, L is
an internal (property) coordinate, A(x ) is the cross-sectional area, G is the growth rate of the
crystals, D is a dispersion coe�cient, and v (x ,L,t ) is the crystals’ �ow velocity that depends
nonlinearly on the number density function n. The reference model is solved numerically
using a �nite volume method, resulting in a system of ordinary di�erential equations of the
type

dn
dt
= Mn + g(n) (2)

The number of equations of the discretized system is in the order of 104. This is quite in-
convenient for process design and process control tasks and motivates the development of a
reduced low order model.

Nonlinear Model Reduction

A reduced model is obtained by Proper Orthogonal Decomposition (POD). First a matrix of
snapshots N = [n(t1),n(t2), . . .] is generated from numerical solutions of the reference model
(2). From a singular value decomposition of N, a reduced basis Ψ is constructed, and the state
vector n is approximated by n ≈ Ψφ,φ being the low order state vector of the reduced model.
Galerkin projection gives the equations of the reduced order model as

dφ

dt
= ΨTMΨφ + ΨT g (Ψφ) (3)

Empirical interpolation [3] is applied to treat the nonlinear term in an e�cient way, i.e. the
nonlinearity is approximated by g ≈ Ψдφд with a basis Ψд and an additional set of algebraic
linear equations to determine the coe�cients φд .

It is found that 50 basis functions, i.e. 50 ordinary di�erential equations, are su�cient for
a satisfactory approximation of the reference model, which consists of 24000 equations after
discretization.

The advantage of this reduction process compared to other approaches may be its applic-
ability to a large class of systems in chemical engineering.
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Abstract

Two new kinetic Monte Carlo procedures to simulate polymerization processes in
high detail are discussed. The �rst procedure starts from the premise that all necessary
information on polymerization kinetics and polymer microstructure can be contained in
a multivariate distribution with a �nite number of variates, in which the stochastic
variates are chosen a priori. The second procedure records every reaction event a
growing polymer molecule undergoes, allowing the a posteriori calculation of the
marginal distribution with respect to any desired variate (chain length, chemical
composition, number of branches, monomer sequence, etc.)

Key words: chemical kinetics, mass transport, modeling, Monte Carlo, polymerization

1 Introduction

Polymerizations are an important class of chemical reactions for the industrial production of
materials used in daily life and for high-tech applications. The application range is
determined by chemical, rheological, mechanical and physical properties, which are
in�uenced by the polymer microstructure. Microstructural characteristics include the chain
length of the polymer molecule, its chemical composition, short chain branch number, etc. The
stochastic nature of chemical reactions implies that polymer molecules are, hence, distributed
with respect to these variables, i.e. a multivariate mathematical treatment is necessary. Such
treatment requires the development of advanced stochastic numerical techniques to facilitate
the tailored design of the polymer microstructure, including the e�ect of the polymerization
technique, the monomer types, the reactor con�guration and the operating conditions. In this
contribution, two recently developed kinetic Monte Carlo (kMC) procedures are presented.

2 Composite binary trees based kineticMonte Carlo procedure

The advent of computer cluster architectures, recent advances in compiler technology and
improved algorithms have decreased the kMC computational time to simulate
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polymerization processes by orders of magnitude, closing in on simulation times o�ered by
commercial deterministic methods. In particular for the univariate chain length distribution
(CLD) calculation in homopolymerization, Cha�ey-Millar et al. [1] extended Gillespie’s
algorithm [2] with binary trees to accelerate the retrieval of chain lengths of reacting
macromolecules. For polymerizations with branch formation or involving more than one
monomer type, a fast kMC calculation method [3] has been recently reported by our research
group, allowing a binary tree based calculation of the bivariate chemical composition—CLD
(CC-CLD), in which the stochastic variables are chain length and branch/comonomer content.
Hence, chains are contained in composite binary trees in which each leaf node of the main
tree, which di�erentiates chains with respect to their length, serves as the root node of a
sub-tree, which di�erentiates chains with respect to their comonomer composition/branching
amount and, hence, contains conditional information, i.e. valid for the selected chain length
in the main tree. For low maximum chain lengths of 103, the improvement already results in
a reduction of the kMC operations by a factor between 103 and 106.

3 Reaction event recording based kinetic Monte Carlo
procedure

For the synthesis of well—tailored polymers, it does not su�ce to only calculate the CLD or
CC—CLD but the monomer sequence of individual macrospecies is also required, as recently
highlighted by our research group [4]. In this work, a complete reaction event history is
calculated allowing extraction of the desired information. This not only paves the way to
de�ne stochastic variables representing the molecular quality of polymer molecules, but also
to the synthesis of polymer molecules with prede�ned monomer sequence. One example of a
well-chosen stochastic variable is the recently introduced gradient deviation GD [4], re�ecting
deviations from desired gradient-like monomer sequences product speci�cations.
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Abstract

The simulation of contact mechanics plays an important role in mechanical engin-
eering and is necessary to ensure a cost- and time-e�cient product development. Large
sliding contacts involving curved surfaces appear for instance in gears, roller bearings,
valves and pumps, but simulating these systems is a challenging task from a numerical
point of view. In contrast to classical �nite element methods, discretizing a structure
with Isogeometric Analysis (IGA) results in a smooth surface representation and higher
inter-element continuity. These are promising characteristics of IGA which could help
to improve e�ciency and robustness of contact mechanics simulations in the future. We
will present an implementation of a 3D-contact algorithm based on IGA and give an
overview of possible industrial applications.

Key words: contact mechanics, NURBS, isogeometric analysis

1 Introduction

Isogeometric analysis, presented by Hughes in 2005, promises to close the gap between com-
puter aided design (CAD) and �nite element analysis by using basis functions, such as B-
Splines, NURBS, T-Splines or subdivision surfaces which describe the geometry exactly in-
stead ofC0-continuous Lagrange interpolatory polynomials to describe �nite elements which
approximate the initial geometry for analysis.

Isogeometric analysis has been an e�cient approach for problems of �uid-solid interac-
tions, extended �nite element methods and electromagnetics [3]. We aim to apply isogeomet-
ric analysis to contact problems. In the original work which introduced isogeometric analysis,
Hughes suggests that smooth, compactly-supported basis functions might improve the mod-
elling of contact problems [1]. Some work in this direction has been done already. Temizer et
al. [3] give an overview of this work and suggest a three-dimensional mortar-based frictional
contact treatment in isogeometric analysis. The pieces of work done so far show the superior-
ity of the NURBS discretization in terms of quality and robustness of the results when applied
to contact computation.
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2 FEM and IGA for contact problems

Results of contact computation are dependent on the contact discretization and on how con-
tact is taken into account. There are several mathmatical methods for this purpose. Due to its
simple implementation we will make use of the penalty method. This method adds a penalty
term to the potential energy of the system, if contact occures. This term is de�ned using a
penetration function. For normal contact the penetration function is

дN =

{

(x2 − x1) · n1 if (x2 − x1) · n1 < 0
0 otherwise , (1)

where the master point x1 is the orthogonal projection of the given slave point x2 and n1 is
the master-surface normal. In classical �nite element contact computations described in [2]
the normal vector n is generally not continuous across element boundaries. This is due to the
interpolation of the structural boundary as well as non-smooth ansatz functions and leads to
incorrect results and convergence problems [3].

Figure 1: FE- (left) and NURBS-discretization (right) of a deformed quarter ring

However, using NURBS and IGA allows a continuous representation of n across the con-
tact surface in all computation steps. In Figure 1 the situation is depicted. A deformed quarter
ring is shown, the FEM discretization results in non-smooth normal vectors across the struc-
tural boundary.

3 Implementation and industrial applications

We will present a 3D frictionless contact formulation based on NURBS dicretization. Special
attention is given to the evaluation of the penetration function. To emphasize the practical
relevance of this research, some industrial applications will be shown.
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Abstract

We discuss Powell-Sabin splines and their rational extension, the so-called NURPS
surfaces, in the context of isogeometric analysis. NURPS are an interesting alternative
for classical tensor-product NURBS, because they allow local re�nement, while retaining
a B-spline like representation and an exact description of conic sections.

Key words: Isogeometric analysis, local re�nement, Powell-Sabin B-splines, NURPS

1 Introduction

Isogeometric Analysis (IgA) is a paradigm for numerical simulation which combines Finite
Element Analysis (FEA) with Computer Aided Design (CAD) methods [1]. The CAD rep-
resentations are used both to describe the geometry and to approximate the unknown solu-
tions of di�erential equations. Tensor-product B-splines and Non-Uniform Rational B-Splines
(NURBS) are common tools in CAD, and so they are in IgA.

Adaptive local re�nement is an important ingredient for obtaining, in an e�cient way,
an accurate solution of di�erential problems. Unfortunately, the tensor-product structure of
B-spline/NURBS spaces precludes a strictly localized re�nement. This motivates the interest
in alternative structures for IgA that permit local re�nement. Here, we consider B-splines on
triangulations, and in particular we focus on Powell-Sabin B-splines [7, 6].

2 Splines on triangulations: PS splines

Powell-Sabin (PS) splines are C1 quadratic splines de�ned on a given triangulation with a
particular macro-structure. Although often expressed in terms of a Hermite basis, they can be
represented with basis functions possessing properties similar to the classical (tensor-product)
B-splines [2]. These PS B-splines form a convex partition of unity, and the coe�cients of this
representation have a clear geometric meaning. A rational extension of PS splines, referred
to as NURPS (Non-Uniform Rational PS) surfaces, can also be easily de�ned [5, 6]. NURPS
surfaces allow an exact representation of quadrics, and their shape can be locally controlled
by control points and weights in a geometrically intuitive way. Higher order B-splines can be
de�ned as well on triangulations with this PS macro-structure [4].

Thanks to their structure based on triangulations, PS splines and their rational extension
o�er the �exibility of classical Finite Element Methods (FEM) with respect to local re�ne-
ment. Moreover, they share with standard NURBS the increased smoothness, the B-spline like
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Figure 1: NURPS solution for the Hemker problem on a locally re�ned triangulation.

basis, and the ability to exactly represent pro�les of interest in engineering applications as
conic sections. Therefore, they constitute a natural bridge between classical FEM and NURBS-
based IgA.

We will discuss NURPS as reference functions for IgA, focussing both on their ability
to represent conic sections and to their �exibility to perform local re�nement. Fig. 1 illus-
trates the solution of the Hemker problem [3], discretized by the NURPS-based IgA approach.
Further details on this example can be found in [7]. The ability of re�ning locally and the
smoothness of the discretization space allow a very sharp detection of internal and boundary
layers.
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Abstract

The isogeometric segmentation problem is to decompose a boundary represented
solid into a small number of topological hexahedra. We survey previous progress on
the segmentation of contractible solids with convex and non-convex edges. We present
ongoing work addressing challenging geometric problems which arise in this context:
constructing a cutting loop, segmenting a face into two, constructing a cutting surface
and producing special cutting surfaces as extensions of existing faces.

Key words: isogeometric analysis, isogeometric discretization, spline interpolation

Introduction We report our ongoing research, initiated in [1, 2], on the problem of seg-
menting a boundary-represented solid into a small number of topological hexahedra suitable
for isogeometric analysis. We consider a boundary-represented contractible solid with a 3-
vertex-connected edge graph. After a summary of the state of the art, we focus on recent
research that addresses challenging geometric problems arising in this context.

State of the art The work in [2] sheds light on complications associated with non-convex
edges. An edge e is non-convex if the two surfaces incident to e meet at a concave interior
angle somewhere along e. In order for the resulting hexahedra to admit non-singular para-
meterizations, all non-convex edges need to be removed as part of the segmentation process.

One step of our procedure segments the solid into two solids with e.g. less non-convex
edges or less vertices. Repeating the procedure results in base solids, e.g. topological tetra-
hedra, which can be decomposed in prede�ned ways into topological hexahedra. For solids
with convex edges, the algorithm of [1] searches for a cutting loop consisting of existing or
auxiliary edges, then interpolates the loop with a cutting surface. In [2] a novel version of the
algorithm is developed for solids with non-convex edges. They are more di�cult to deal with
as the existence of a cutting surface requires geometric criteria to hold at the vertices.

Geometric challenges and recent progress We report our recent progress on three of
the interesting challenges which arise in isogeometric segmentation. The �rst arises when
we improve the method of [2] by allowing a more general type of cutting loop. The other two
challenges appear when realizing cutting surfaces with splines (an important step which is
not addressed in [1, 2]).
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(a) (b) (c)
Figure 1: Complications arise when splitting
a solid by extending a face.

S

S1

T

c1 (t )c2 (t )

c2 (t1) c′2 (t1)

Figure 2: Splitting a domain into two: �nding a
guiding curve and �tting it with a spline curve.

Segmentation based on extension of an existing surface. In certain situations it is pos-
sible to segment a solid by extending a face. Fig. 1 shows some possible scenarios. Solid
(a) was segmented into 31 topological hexahedra in [2] but can be segmented into just
4 by joining the two marked faces up as a �rst step. Extending the marked face in Solid
(b) creates a solid that is not simply connected. Solid (c), which has an arti�cial edge,
can be segmented into two hexahedra but it requires extending three faces and merging
two of them.

Subdivision of a face based on an interior curve. The creation of an edge splitting a face
of a solid can be done by subdividing the parameter domain. We construct a guiding
curve that splits the domain into two, then �t a spline to the guiding curve (see Figure 1).
There are a variety of ways to construct the guiding curve, including path�nding al-
gorithms.

Construction of a cutting surface from a cutting loop. Given a cutting loop, we construct
a trimmed surface which can be used for the new faces of the two solids resulting from
the segmentation. We choose a unit normal at each corner based on the tangent vectors
of the incident edges. Then we interpolate the normals in a valid way along the edges,
construct a domain and �t a surface using a least squares approach (see Figure 3).

(a) (b) (c) (d)
Figure 3: (a) a cutting loop with normals de�ned at each corner; (b) interpolating the normals
along the edges; (c) domain for the trimmed surface; (d) surface found by least squares �tting.
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Abstract

We develop in this work a procedure for obtaining the fatigue life of complex struc-
tures directly from Computer-Aided Design (CAD) data, without any mesh generation or
regeneration as the cracks evolve. The method relies on a standard isogeometric bound-
ary element method (BEM) where the same basis functions are used to both describe the
geometry of the component and approximate the displacement and traction �elds.

To capture the stress singularity around the crack tip in the framework of linear
elastic fracture mechanics, two methods are proposed: (1) a graded knot insertion near
crack tip; (2) partition of unity enrichment.

A well-established CAD algorithm [1] is adopted to generate a smooth crack sur-
face as the crack grows. The M integral and Jk integral methods for the extraction of
stress intensity factors are compared in terms of accuracy and e�ciency. The numerical
results are compared against closed-form solutions as well as other numerical methods,
namely the collocation BEM with a Lagrangian basis, a symmetric Galerkin BEM and
extended �nite element methods. The crack growth paths and fatigue lives obtained by
the proposed method are validated using experimental data.

Key words: Isogeometric analysis, partition of unity enrichment, linear elastic fracture,
boundary element method, fatigue crack growth

The isogeometric analysis (IGA) based on �nite element methods was proposed by [2].
The idea of IGA is to use the same shape functions to describe the known CAD geometry and
the unknown �eld variables. However, CAD systems typically only provide the boundary of
the domain [1] and do not provide any description of its interior. Hence, in its original form,
as proposed in [2], IGA still requires an additional parametrization of the domain’s interior,
which has been the subject of much e�ort since the �rst inception of the method.

To resolve this issue, the isogeometric collocation BEM was developed and exercised in
elastostatics by Simpson et al [3] to perform stress analysis directly from CAD and without
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any meshing [4]. Implementation aspects of the method were provided in [5] and the method
was extended to three-dimensional stress analysis of complex structures in [6].

In this work, we advance the concept we proposed in [3] to predict the fatigue life of
engineering structures using a simple Paris law. In conventional fatigue simulations as per-
formed industrially [7] using the �nite element based methods, the key di�culty is the ac-
curate computation of the crack driving force, namely the stress intensity factors (SIFs). The
second di�culty is that the domain mesh used for stress analysis and hence for the detec-
tion of “sensitive” regions in the component, where initial �aws are introduced, is typically
at least one order of magnitude too coarse to provide quality SIFs. The third di�culty lies
in the geometrical complexity of the domain which, if the predicted fatigue life is deemed
inadequate must be redesigned. For each new design, and for each crack con�guration, a new
mesh typically needs to be generated, not only to conform to the new chosen geometry, but
also to properly resolve stresses in the vicinity of the crack tip. Even when enriched �nite
element methods are used, some level of remeshing is required [7].

Collocation BEM is an strong contender to attack fracture mechanics problems, because
it requires only boundary discretization, simpli�es the insertion of new crack segments dur-
ing growth and o�ers superior accuracy for the computation of the SIFs for the same number
of degrees of freedom compared to other methods. Since BEM requires only boundary dis-
cretization, it is also an ideal partner for IGA. We show that isogeometric dual BEM with or
without partition of unity enrichment is a robust and accurate method to deal with for fracture
simulations and that such simulations require no meshing nor remeshing in the conventional
sense.
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Abstract

In this work we simulate the Lorentz detuning of an accelerating cavity, which is the
change of the resonant frequency due to the mechanical deformation of the cavity wall
induced by the electromagnetic pressure. The coupled electromagnetic-mechanical prob-
lem has been solved using Isogeometric Analysis, leading to an e�cient full 3D simula-
tion and to solutions which are substantially more accurate than standard �nite element
techniques.

Key words: Isogeometric Simulation, Lorentz detuning, Particle accelerators, Supercon-
ducting Devices

1 Introduction

The radiation pressure generated by the electromagnetic �eld in superconducting cavities
causes a non-negligible deformation of the cavity walls. Lorentz detuning e�ect is the fre-
quency shift of the accelerating eigenmode associated with this deformation of the geometry
[1]. The coupled electromagnetic-mechanical problem to be solved is the following:

∇ ×
(
1
µ0
∇ × E

)
= ω2ϵ0E and ∇ ·

(
2η∇(S )u + λI∇ · u

)
+ f = 0. (1)

The domain of the left equation of (1) is vacuum within the cavity, while the right equation is
solved in the wall region. µ0 and ϵ0 are the permeability and permittivity of vacuum, ω is the
angular eigenfrequency, E is the electric and H = ∇×E/(iωµ0) the magnetic �eld, η and λ are
the Lamé constants of niobium, u is the displacement of the wall and f is the force density.
The coupling between the electromagnetic problem and the mechanical one takes the form of
the radiation pressure on the common interface: p = −1/2ϵ0EnE∗n + 1/2µ0HtH∗t . Despite the
relevance of the frequency shift, the displacements of the walls are very small with respect
to the typical cavity dimensions. Therefore, it is necessary to represent the geometry and
its deformation with the greatest accuracy. We propose to exploit the interesting features of
Isogeometric Analysis (IGA) [3] to solve the coupled problem (1).
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Figure 1: TESLA cavity [6]: undeformed geometry (green);
deformed geometry (brown, ampli�ed by a factor 400000); the
solution has been replicated along the z axis to show an ideal
3-cell cavity. On the right: deformed accelerating cavity mode.

Table 1: Frequency shift values.

No. of subdivisions shift
2 (7356 DoFs) 9.603630 Hz
3 (18768 DoFs) 9.232927 Hz
4 (38260 DoFs) 9.023365 Hz
5 (67922 DoFs) 8.951231 Hz

Isogeometric Analysis was introduced in [2] less than a decade ago with the aim of
bridging the gap between Computer Aided Design (CAD) and Finite Element Method (FEM). One
can build the approximation spaces for the discrete solutions using the same basis functions
(primarily B-Splines and NURBS) that describe the CAD geometry, leading to the so-called
isoparametric approach. For the discretization of the mechanical problem (1) the isoparamet-
ric concept has been applied since with this choice, the new geometry is simply obtained
by adding the solution vector to the control net of the original NURBS domain. On the other
hand, for electromagnetic problems, it has proved more useful to use basis functions that have
the advantage of generating a De Rham graph. In particular, the discretization of Maxwell’s
eigenproblem (1) is obtained using the scheme introduced in [4].

2 Results and conclusions

The simulation of the complete problem has been done using the free software GeoPDEs [5].
The values of the eigenfrequencies of the �rst accelerating modes of the TESLA cavity [6]
obtained with the 3D IGA simulation were compared to the ones computed by a 2D lowest
order FE simulation [1]. The results show that we were able to obtain a higher order of
accuracy per-degree-of-freedom with respect to classical FEM (even when comparing 3D IGA
with 2D FEM). The relevant accelerating mode is the �rst eigenmode and corresponds to a
frequency value of approximately 1.3 GHz. In Fig. 1 the comparison between the starting
geometry of the walls and the deformed one is shown along with the frequency shift values
in Table 1. In conclusion, it has been shown that IGA is more than capable of competing with
FEM for cavity simulation. We were, in fact, able to accurately represent both the reference
geometry and its deformation, and to obtain smooth and accurate solutions. The calculated
frequency shifts results are in very good agreement with results reported in literature.
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Abstract

We present a novel mathematically faithful object oriented design for a general pur-
pose isogeometric library and introduce a high quality C++11 open source implementa-
tion of it, igatools (www.igatools.org).

Key words: isogeometric analysis, software library, object oriented, dimension independ-
ent, CAD integration

MSC 2010: 65N30, 97N80, 97N40, 68N19, 65D07

Inspired by the desire to unify the �elds of computer aided geometrical design (CAGD)
and the �nite element method (FEM), the visionary work [1] introduced a technique for the
discretization of partial di�erential equations dubbed isogeometric analysis (IGA).

The mainly advertised feature of IGA has been the ability to describe exactly CAGD type
geometries. This is so because the method proposes to use the same type of spaces to represent
the geometry and the shape functions (mostly non uniform rational B-splines). In addition,
the use of B-spline functions allows global smoothness beyond the classical C0 continuity of
standard �nite elements: this permits the design of novel numerical schemes that would be
extremely di�cult to obtain with standard �nite elements. Isogeometric methods have been
summarized in a recent book [2] and intensively studied in the last years. They have been
successfully used in applications such as �uid, structural mechanics, electromagnetism.

The similarity between IGA and FEM permits to enhance an existing �nite elements solv-
ers with isogeometric capability quite easily and without breaking the classical �nite element
assembling strategy: loop over the elements→ computation of the local (element-based) op-
erators→ assembling of the global operators from the local one.
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After a decade of research in the area, with many successes, some issues (that require
further research) and many promising ideas, it is time –at least in the research community–
to have an open source modernly designed isogeometric software library.

We present a novel mathematically faithful object oriented design for a general purpose
isogeometric [2] library and introduce a high quality C++11 open source implementation of
it, igatools (www.igatools.org).

igatools uses advanced programming techniques and supports dimension independent
programming [4], and includes support for manifolds and isogeometric elements of the H-div
and H-curl type [3].

All classes are designed in such a way that the space dimension, co-dimension and the
tensorial range are selected as template parameters. The use of templates is very convenient
for scienti�c computing, they allow to have a single code that is resolved at compile time
generating optimized code as it was written for each instance of the dimension and with no
run-time checks and without using virtual functions that would a�ect performance. This
approach allows us to write an application code that is independent of dimension and range
(provided that the mathematical problem can so be formulated). For example, let’s say that a
user writes the code for a 2D problem that can be mathematically formulated in any dimension
(e.g. Poisson’s equation). If this code is written with some minimal care, then the same code
will run for the problem with the physical domain being 1D, 3D or a 2D manifold embedded
in R4 and for the solution being scalar-, vector- or tensor-valued.

Moreover, the modularity of igatools let the user to easily integrate the built-in cap-
abilities with external libraries (e.g. CAD routines) if needed, and its generality allows to use
igatools in order to implement IGA methods into existing FEM codes.

We present the general design and some applications in order to show the potential and
the �exibility of the library. In particular it is shown an application in which igatools is used
in combination with an existing library for the �nite element analysis of non-linear elastic
solid deformations. A comparison between the proposed implementation and the plain �nite
element code is proposed on some test problems, revealing the superiority of the isogeometric
approach.
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Abstract

The interest in combining the Finite Element (FE) method with the Boundary In-
tegral Equation (BIE) method led to various hybrid FE-BIE formulations in literature.
However, some formulations su�er from breakdown frequencies at which the solution is
not uniquely de�ned, introducing errors due to internal resonances. The occurrence of
these errors is investigated by identifying the Poincaré-Steklov operator, which relates
the tangential electric �eld to the equivalent electric current on the boundary of a do-
main, in both the FE and BIE method. This identi�cation provides new insight in internal
resonances for both conformal and non-conformal formulations.

Key words: hybrid FE-BIE, internal resonances, Poincaré-Steklov operator

1 Introduction

The exact formulation for combining the Finite Element (FE) method with the Boundary In-
tegral Equation (BIE) method appears to be very important in order to avoid so-called spurious
solutions. Previous contributions demonstrated that formulations applying the Electric Field
Integral Equation (EFIE) or the Magnetic Field Integral Equation (MFIE) as BIE method in
combination with an FE method contain certain forbidden frequencies if the background me-
dium is lossless [1]. At these frequencies, the EFIE and MFIE are not uniquely de�ned and the
sourceless hybrid system contains non-trivial solutions that introduce errors to the result.

Here, these spurious solutions are investigated on an operator level thanks to the concept
of the Poincaré-Steklov (PS) operator, which describes the relationship between the tangential
electric �eld and the equivalent electric current on the boundary of a domain. In this way,
di�erent properties regarding internal resonances are easily derived for both conformal and
non-conformal hybrid FE-BIE formulations [2].
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2 Identifying the Poincaré-Steklov operator

In the FE domains, all interior unknowns are eliminated by reducing the system matrix to its
Schur complement. This already provides a relationship between the tangential electric �eld
and the equivalent electric current on the boundary of the FE domain: SEt = jk0η0J. Here, Et
and J are the tangential electric �eld and the equivalent electric current, respectively, S is the
Schur complement, j is the imaginary unit, k0 is the free space wave number and η0 is the free
space impedance. Hence, the PS operator is easily obtained by scaling this Schur complement
with jk0η0.

In the BIE method, the PS operator is obtained from the Calderón projector. This reveals
several interesting properties of the PS operator, such as its relation with the BIE integral
operators T and K [2].

3 Internal resonances

The internal resonance problem originates from the non-uniqueness of the EFIE and the MFIE
at certain frequencies. However, the spurious solutions of the sourceless EFIE and MFIE are
di�erent from each other. Hence no internal resonances occur when both the EFIE and the
MFIE are satis�ed. Therefore, the occurrence of internal resonances is investigated by verify-
ing if a hybrid formulation satis�es both the FE wave equation, the EFIE and the MFIE at all
frequencies. This veri�cation can be done for both conformal hybrid formulations, where ad-
jacent domains share the same discretisation, and non-conformal hybrid formulations, where
all domains are allowed to have independent discretisations.

Thanks to the obtained properties of the PS operator, the breakdown frequencies of sev-
eral hybrid formulations can be predicted for simple con�gurations. It can also be demon-
strated that only induced resonance currents (or �elds) radiate.

4 Conclusion

By identifying the PS operator in both the FE wave equation, the EFIE and the MFIE, it be-
comes possible to investigate the stability of several hybrid FE-BIE formulations on an oper-
ator level. Moreover, the internal resonances can be predicted for simple con�gurations.
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Abstract

We discuss the so-called Local Multiple Traces Formulation recently introduced by
Hiptmair & Jerez-Hanckes [2] for solving Helmholtz and Maxwell transmission prob-
lems for heterogeneous scatterers. Using integral boundary operators and local Dirichlet
and Neumann traces per subdomain, the resulting Fredholm �rst-kind formulation is
free from spurious resonances, easy to construct with standard schemes and though ill-
conditioned, it is amenable to preconditioning via diagonal or Calderón-type techniques.
We present new results for higher frequencies via conforming spectral discretizations.

Key words: Boundary integral equations; domain decomposition; Calderón precondi-
tioning

1 Introduction

Consider the simplest setting for the Helmholtz case1. Let Ω := Ω̄1 ∪ Ω̄2 be a heterogenous
scatterer, composed of two bounded subdomains Ω1,Ω2 and set Ω0 := Rd \ Ω̄ with interfaces
Γi j := ∂Ωi ∩ ∂Ωj . Helmholtz operators with constant wavenumbers κi ∈ C \ R− are to be
satis�ed in each subdomain Ωi . With this, the local MTF hinges on the following ideas:

1. Every pair of Dirichlet/Neumann traces de�ned on subdomains Ωi denoted by λi :=
(λiD ,λ

i
N ) are unknowns;

2. Transmission conditions across each interface Γi j are enforced weakly via local restric-
tion and normal orientation operators;

3. Use integral representations in each subdomain to set up Calderón identities over bound-
aries ∂Ωi , such that

λi =
(1
2 Id+Ai

)
λi =

( 1
2 Id−Ki Vi
Wi

1
2 Id+K

′
i

) (
λiD
λiN

)

where Ai contains the standard weakly singular, double layer, adjoint double layer and
hypersingular integral operators, denoted Vi ,Ki ,K′i and Wi , respectively, over ∂Ωi for
a wavenumber κi .

1The general case can be found in [1, 2]
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Figure 1: Dirichlet trace approximation for di�erent harmonics used.

After de�ning restriction-orientation-and-extension operators X̃i j , which are no more than signed
duality products, the local MTF system becomes

〈*..,
A0 − 1

2 X̃01 − 1
2 X̃02

− 1
2 X̃10 A1 − 1

2 X̃12
− 1

2 X̃20 − 1
2 X̃21 A2

+//-
*..,
λ0
λ1
λ2

+//-
,

*..,
φ0

φ1

φ2

+//-
〉
=

〈*..,
g0

g1

g2

+//-
,

*..,
φ0

φ1

φ2

+//-
〉

which is ready for parallelization and whose variational form requires local test functions
such that their restrictions to interfaces Γi j lie in H̃ 1/2 (Γi j ) × H̃−1/2 (Γi j ).
Theorem ([2]) The local MTF system is uniquely solvable for all g inH 1/2 (∂Ωi )×H−1/2 (∂Ωi ).

2 Spectral approximation and Results

We prove the amenability of the MTF for spectral elements in 2D under the simple case of a
circle divided in two halves. Particular choices over canonical parametrizations of the curves
–circle for the subdomain boundary, segment [−1,1] for the interfaces– are

• Trial spaces: Fourier polynomials for both Dirichlet and Neumann unknowns;

• Test spaces per interface: weighted Tchebyshev polynomials of the �rst and second kind,
i.e. wUl for H̃ 1/2 (Γi j ) and w−1Tl for H̃−1/2, (Γi j ), with w =

√
1 − x2.

The structure of test bases depends on the number of interfaces and number of harmonics.
Computational results for this case show accurate convergence to Mie series (Figure 1).
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Abstract

We propose a dual basis formalism based on the Poisson-Neumann functions for ge-
neral polygonal surface cells. The basis functions possess the dual H(curl) and H(div)
space properties needed for a stable discretization of the tangential �elds and surface
currents. The Calderon identities are reformulated in terms of an impedance and an
admittance surface integral operator. The dual basis is applied to obtain a discrete re-
presentation of the Calderon identities. We discuss the accuracy of the Calderon rela-
tions and evaluate their spectral properties to regularize the ill-conditioned electric �eld
integral operator.

Key words: Calderon identities, dual basis, Poisson-Neumann, regularization, integral
equations

1 Introduction

The electric (EFIE) and magnetic (MFIE) surface integral equations are widely used for the
solution of EM scattering problems at homogeneous and composite objects. In order to deal
with the ill-conditioned electric �eld integral operator, so called Calderon pre-conditioning
techniques have been proposed [1]. They rely on the Calderon identities to transform the
�rst kind integral equations into a second-kind integral equation. For reasons of numerical
stability and orthogonality, the Rao-Wilton-Glisson (RWG) functions are typically comple-
mented with the Bu�a-Christiansen (BC) functions [2] to obtain a dual basis for the discrete
representation of the equivalent surface currents that show up as the unknowns in the sur-
face integral equations. The RWG functions have triangular support while the BC functions
are composed as a linear combination of smaller RWG’s de�ned over the barycentric re�ned
triangular mesh.

2 Poisson-Neumann dual basis formalism

In this paper, we propose a novel dual basis setup based on the Poisson-Neumann (PN) func-
tions [3]. These functions are de�ned for general polygonal shaped support. We present the
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PN functions for a primary mesh consisting of a general assembly of rectangular, triangu-
lar and quadrangular cells. The barycentric de�ned dual mesh consists of general polygonal
shaped cells. By construction, the PN functions possess the proper dual H(curl) and H(div)
space properties. The Poisson-Neumann dual basis setup is applied to obtain a discrete re-
presentation of the tangential �elds and currents on the surface of a general simply connected
volume. Figure 1 shows as example the vector plots of a primary and the corresponding dual
edge Poisson-Neumann basis function. It is clearly visible that the dual edge basis function is
almost orthogonal with the primary edge basis function.

3 Discrete Calderon identities

The Calderon relations are reformulated in terms of an impedance and an admittance operator.
The impedance operator maps the electric surface current onto the tangential electric �eld.
The admittance operator maps the magnetic surface current onto the tangential magnetic
�eld. It is shown that the admittance operator discretized over the dual mesh regularizes
the ill-conditioned impedance operator discretized over the primary mesh and vice versa.
The accuracy of the discretized Calderon relations are evaluated for a number of generally
shaped, simply connected volumes with general materials (dielectric and conducting). By
computing the condition numbers of the discrete matrices over a wide frequency band, the
low-frequency regularization properties are demonstrated. As an example, �gure 2. shows
the condition number of the electric �eld impedance operator and the improved condition
number of the pre-conditioned impedance matrix for the volume object of �gure 1. Note that
the scales of the plot are logarithmic. The electric �eld impedance operator exhibits a low-
frequency break-down which scales with the inversed square of the frequency and �attens
out at the machine precision of �oating point numbers.
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Abstract

Calderon preconditioning is an e�cient technique for improving conditioning of
ill-conditioned matrices arising from discretization of electromagnetic surface integral
equations. In the case of penetrable objects the large variety of material parameters
poses additional challenges in developing e�cient preconditioners.

Key words: Calderon preconditioning, electromagnetic scattering, surface integral equa-
tions

1 Introduction

Surface integral equation method provides elegant solutions for time-harmonic electromag-
netic scattering by homogeneous penetrable objects. Most often these methods are based
on the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) [1] formulation. Discretiza-
tion of the PMCHWT equations with conventional techniques, however, leads to a very ill-
conditioned matrix equation. Recently Calderon preconditioning techniques, developed ori-
ginally for perfectly conducting objects [2], have been extended for the PMCHWT formu-
lation too [3]. In this contribution we discuss challenges in developing e�cient Calderon
preconditioning techniques for the PMCHWT formulation.

2 Calderon Preconditioned PMCHWT Formulation

Consider time-harmonic electromagnetic scattering by a homogeneous penetrable object in
a homogeneous background medium. Let us formulate the problem with the PMCHWT
equations. By discretizing these equations using Galerkin’s method and Rao-Wilton-Glisson
(RWG) functions gives a matrix equation [3]

Pf f xf = bf . (1)

Here f stands for an RWG function. A Calderon preconditioner for (1) reads

PддG−1Pf f xf = PддG−1bf , (2)

where Pдд is the PMCHWT operator discretized with the Bu�a-Christiansen functions [4]
and G is the Gram matrix linking the n × RWG and BC functions [3]. Here n is the unit
normal vector of the boundary of the object pointing into the exterior.
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3 Numerical Experiments

Consider planewave scattering by a sphere with kr = 1, where k is the wavenumber in va-
cuum and r is the radius of the sphere. Figure 1 shows the number of GMRES iterations re-
quired to obtain relative residual error of 10−4 and the magnitudes of the smallest and largest
eigenvalues of the Calderon preconditioned PMCHWT formulation with respect to the per-
mittivity of the sphere. We can make the following observations:

1. The number of iterations and the magnitude of the largest eigenvalue increase as the
permittivity is increased.

2. At certain permittivities the number of iterations increase and the smallest eigenvalue
decrease.

3. The number of iterations show a signi�cant increase for negative permittivities.

4. The formulation becomes singular at εr = 0.

0 10 20 30 40 50
10−4

10−2

100

102

104

106

|E
ig

en
va

lu
e|

Relative permittivitty
 

 
max eig
min eig

0 10 20 30 40 50
100

101

102

N
um

be
r o

f i
te

ra
tio

ns

Relative permittivitty

Figure 1: Number of GMRES iterations (left) and magnitudes of the eigenvalues (right).
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Abstract

The convergence behavior of the solution of the mixed discretization of the magnetic
�eld integral equation is investigated. It is proved that, when the scatterer is smooth and
simply connected, the discretization achieves optimal convergence in the H−

1
2

div or energy
norm. This norm is as sensitive to the charge as to the current. Hence, this convergence
result explains why the mixed discretization leads to much more accurate solutions than
the standard discretization, for which only convergence in the L2 norm has been proved.
Key words: MFIE, mixed discretization, convergence, energy norm.

1 Introduction
The magnetic �eld integral equation (MFIE) models the scattering of electromagnetic waves
by a perfectly conducting scatterer. When the scatterer occupies the domain Ω and has bound-
ary Γ, the MFIE is given by

lim
r′→r

n̂(r) ×
[
h [j] (r′) + hi (r′)

]
= 0, ∀r ∈ Γ (1)

where n̂(r) is the exterior surface normal to Γ and h [j] (r) is the magnetic �eld in the point
r, generated by the surface current distribution j(r). For the modeling of the �elds outside
of Ω, the limit should be taken such that r approaches the boundary Γ from the inside of the
scatterer. In this case, equation (1) is sometimes called the external MFIE. Essentially, it states
that the tangential magnetic �eld just inside of the PEC should be zero.

To solve the external (or similarly the internal) MFIE, its solution is usually approxim-
ated as a linear combination of Rao-Wilton-Glisson (RWG) basis functions. Subsequently, the
equation is tested with the same functions. This leads to what will henceforth be called the
’standard MFIE’. However, the literature is rife with evidence that the standard MFIE yields
results that are, in general, much less accurate than those obtained using the electric �eld in-
tegral equation (EFIE), given the same mesh density. In addition, a low-frequency breakdown
can be identi�ed [1] that leads to nonphysical solutions when the frequency gets too low.

Recently, a di�erent testing scheme for the MFIE was proposed [2], dubbed the mixed
discretization, using rotated Bu�a-Christiansen (BC) functions. As shown in [3], this scheme

page 171 of 223 ISBN: 978-9-08223-090-1 ACOMEN©2014
[paper 81]



avoids the low-frequency breakdown of the standard MFIE for simply connected scatterers.
Therefore, it is well understood why the mixed MFIE works at low frequencies, while the
standard MFIE does not. However, numerical results also show that the mixed MFIE leads to
much improved accuracy (over the standard MFIE), rivaling the EFIE for comparable mesh
density. The reasons for this behavior are less well understood and cannot be fully explained
based on the mechanism of the low-frequency breakdown.

2 Optimal Convergence for the Mixed MFIE
In this contribution, an at least partial explanation for this behavior will be provided. In
particular, it will be shown that the solution of the mixed MFIE converges in the H

− 1
2

div norm,
whereas the best known result for the standard MFIE is convergence in the L2 norm. The
surface of the scatterer will be assumed to be smooth, such that the integral operator h [j] (r′)
becomes

h [j] (r) = 1
2 j(r) + C

[j] (r), (2)

where C is a compact operator.
Using these assumptions, a discrete Inf-Sup condition for the mixed MFIE will be de-

rived, based on the discrete Inf-Sup property of the RWG-BC dual �nite element pair and the
compactness of C:

inf
u∈Xh

sup
v∈Bh

|〈n × v(r),h [u] (r)〉|
‖v(r)‖

H
− 12
div
‖u(r)‖

H
− 12
div

≥ β > 0. (3)

Here, Xh is the span of all RWGs de�ned on a given quasi-uniform mesh with maximal edge
length h, while Bh is the span of all BC functions on the same mesh. The details of the deriv-
ation require that h is su�ciently small and that the frequency is not a resonance frequency
of the scatterer’s interior. Finally, the discrete Inf-Sup property (3) is used to prove optimal
converge (up to constant factors) in the H−

1
2

div norm.
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Abstract

We introduce a novel combined �eld integral equation that does not su�er from in-
ternal resonances and solves several drawbacks of existing resonance-free formulations.
The new equation is obtained by combining a regularized electric type operator with
a new magnetic type operator that exhibits uniform frequency scaling when acting on,
or being tested within, the harmonic Helmholtz subspace for surface currents. With
an appropriate use of quasi-Helmholtz projectors, the equation is stable for arbitrarily
low-frequencies. Numerical results con�rm the theoretical developments and show the
e�ectiveness of the scheme.

Key words: Calderon Preconditioning, Integral Equations

1 Introduction
All known integral equation techniques for simulating scattering and radiation from arbit-
rarily shaped, perfect electrically conducting objects su�er from one or more of the follow-
ing shortcomings: (i) they give rise to ill-conditioned systems when the frequency is low
(ii) and/or when the discretization density is high; (iii) their applicability is limited to the
quasi-static regime; (iv) they require a search for global topological loops; (v) they su�er from
numerical cancelations in the solution when the frequency is very low. A recent paper [1]
presented a new integral operator of the electric type that does not su�er from any of the
above drawbacks.

This contribution extends a recently developed electric type operator immune from (i)-
(v) by developing a new magnetic type operator that can be used to construct a combined
�eld operator that does not su�er from (i)-(v) and is immune from interior resonances, i.e.
that is uniquely solvable for all frequencies. The new formulation is obtained starting from a
Helmholtz decomposition of two discretizations of the electric �eld integral operator and from
a suitably symmetrized mixed discretization of the magnetic �eld integral operator obtained
by using RWGs and dual bases functions, respectively. The new decomposition does not
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(a) Sphere: far �eld calculated when the
frequency equals 10−40Hz.
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(b) Sphere: condition number as a function of frequency.

Figure 1: Numerical results

leverage Loop and Star/Tree basis functions; rather, it employs projectors that derive from
them and does not require the explicit detection of global topological loops. The theoretical
developments will be corroborated by numerical results, con�rming the e�ectiveness of the
newly developed method.

2 A new combined �eld equation
The new combined �eld equation we propose reads

(
η2

(I
2 − Kik

) (I
2 +Kk

)
(k ) + TikTk

)
(J) =

(I
2 − Kik

)
(n̂r × H) + Tik (n̂r × E) (1)

The equation is discretized by adopting a mixed-discretization strategy (see references in [1])
where the magnetic operators are tested with Bu�a-Christiansen (BC) basis functions. For the
sake of brevity we consider a discretization for the case of simply connected structures; minor
modi�cations are required for the non-simply connected case. The discretization reads:

(
η2M

( ¯̄GTmix
2 − ¯̄Kik

mix

) ( ¯̄GT
mix

)−1 ·
( ¯̄GTmix

2 +
¯̄Kk

mix

)
¯̄M +M ¯̄TikBCM

¯̄G−1mix
¯̄M ¯̄TkRWG

¯̄M
)
Ī = (2)

η2M
( ¯̄GTmix

2 − ¯̄Kik
mix

) ( ¯̄GT
mix

)−1
V̄H +M

¯̄TikBCM
¯̄G−1mix

¯̄MV̄.

The de�nition of the matrices and in particular of the projectorsM and ¯̄M is omitted here for
space limitations, but it can be found in [1] for low frequency simulations. The projectors are
set equal to the identity, instead, for high frequency ones.

3 Numerical results
The numerical tests involve a sphere of unit radius that is excited by a plane wave. The fact
that the new equation is immune from the very low frequency current cancelation is con-
�rmed by Fig. 1(a) which show the far �eld calculated using the new equation at 10−40Hz.
From Fig. 1(a) it is clear that although a standard Calderón equation can provide a stable solu-
tion till relatively low frequencies, the new equation is immune from the very low frequency
current cancelation and provides stable solutions even when the frequency is arbitrarily low.
The resonance free behavior of the new equation is tested in Fig. 1(b) where the new formu-
lation clearly shows to be resonance-free.
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Abstract

The EFIE results upon application of the BEM in a systems that becomes increasingly
ill-conditioned as the mesh parameter tends to zero. For structures that do not contain
junctions, this problems has been mitigated by application of Calderón preconditioning
[1]. Calderón preconditioning requires not only a divergence conforming �nite element
space such as the space of RWG/RT functions, but also a dual �nite element space such
that the discrete Helmholtz subspaces are of complementing dimensionality and such
that the overlap matrix is well-conditioned, both with respect to the matrix and energy
norms. These families have been described in [2] for both closed and open manifolds. In
this contribution, a Calderón preconditioning scheme for the EFIE applied to scatterers
containing junctions is introduced. This scheme is based of the per manifold precon-
ditioning of the EFIE operator and an appropriate combination procedure. The scheme
hinges on the correct generalisation of the functions described in [2]. In this contri-
bution, the EFIE on junction structures [3] and the Calderon Preconditioned EFIE [1]
is revisited, the dual �nite element spaces are introduced and described, and numerical
results are presented that corroborate the correctness and e�ectiveness of the method.

Key words: Calderón Preconditioning, Electromagnetic Scattering, Electric Field Integral
Operator, Junctions, Frequency Domain Analysis

1 Introduction

To simplify the discussion, consider a geometry comprising three open sheets Γi with normals
ni that meet at the curve γ . The structured is submerged in a background medium character-
ized by an impedance η and is illuminated by an incident electric �eld e. The induced current
j on Γ is divergence conforming in the sense that at every curve in Γ (including the junction
γ ), the total incoming �ux adds to zero. Moreover, the current is the solution to

t (n × k, j) := − 1
ik

∫∫

Γ×Γ
div k(r) div j(r′)e

− ik |r−r′ |

|r − r′ | d r d r′

− ik
∫∫

Γ×Γ
k(r) · j(r′)e

− ik |r−r′ |

|r − r′ | d r d r′

=
1
η
〈k,e〉Γ, (1)

page 175 of 223 ISBN: 978-9-08223-090-1 ACOMEN©2014
[paper 83]



for all k that are divergence conforming. This equation is most commonly discretized using
the set of Raviart-Thomas/Rao-Wilton-Glisson (RT/RWG) basis functions fn on a triangular
mesh of Γ, which is a subset of the larger set of basis functions f̃n whose normal components
are not constraint at γ . The set of the divergence conforming functions can be written as
the range of a recombination matrix P such that fn =

∑
m Pm,n f̃n . The expansion coe�cient

w.r.t f̃ of the induced currents are then the solution to P′TPy = P′e, where T is the matrix
constructed by substituting f̃n for k and j. The expansion coe�cients w.r.t fn are x = Py. The
regularized discrete equation is

Q ′G′−1SG−1TPy = Q ′G′−1SG−1e. (2)

Here S is the discretization of (1) w.r.t a dual set of basis functions g̃n to the set f̃n , and Q is the
recombination matrix for the dual set of basis functions. The correct dual set of divergence
conforming basis functions is a generalization of the set introduced in [2]. In [2], three families
of basis functions were introduced such that the dimensions of the kernel and images of the
surface curl and divergence yields the same Betti numbers as found by studying the homology
group. The functions introduced here generalize this to the homology relative to the subset of
the boundary that coincides with the junction. In particular, the Helmholtz structure is such
that the square of the hyper-singular contribution vanishes, thus suppressing the norm and
condition number of the preconditioned system matrix.
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Figure 1: The basis functions introduced here are generalisations of those introduced in [2]:
there are basis functions that are attached to edges on the junction, there are basis functions
whose support touches the junction or both the junction and the structure’s boundary.
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Abstract

We brie�y present two-stage numerical procedure of [1] for the solution of hyper-
bolic coe�cient inverse problem. On the �rst stage an approximate globally convergent
algorithm of [1] rigorously guarantee obtaining at least one point in a small neighbor-
hood of the exact solution without any advanced knowledge of that neighborhood. On
the second stage an adaptive �nite element method of [3] re�nes the solution obtained
on the �rst stage.

We demonstrate numerical veri�cation of the two-stage procedure, presented in [2, 5,
4] and implemented in the software package WavES [6], on the reconstruction of refract-
ive indices and shapes of inclusions from backscattered experimental data provided by
the Optoelectronics and Optical Communications Center of University of North Carolina
at Charlotte, Charlotte, USA.

Key words: coe�cient inverse problems, approximate global convergence, adaptive �nite
element method

MSC 2010: 65N15, 65N30, 35J25

1 Introduction

We consider the problem of reconstruction of refractive indices, shapes and locations of ob-
jects placed in the air from blind backscattered time-dependent experimental data using two-
stage numerical procedure presented in our recent works [1, 2, 5, 4]. In these works only
targets located in air are considered. The work on real data for the case when targets are
buried under the ground is ongoing. Experimental data were collected using a microwave
scattering facility which was built at the University of North Carolina at Charlotte, USA. A
potential application of our work is in imaging of explosives. Our experimental data are gen-
erated using a single location of the source. The backscattered signal is measured on a part
of a plane, see [2, 5] for the description of the data collection procedure.
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Two-stage numerical procedure means that we combine two di�erent methods to solve
our Coe�cient Inverse Problem (CIP). On the �rst stage the approximately globally conver-
gent method of [1] is applied in order to obtain a good �rst approximation for the exact
solution. We have presented results of reconstruction on this stage in our recent publications
[2, 5]. Only refractive indices n(x) =

√
εr (x), x = (x ,y,z) ∈ R3, and locations were accurately

reconstructed in [2, 5].
On the second stage the local adaptive �nite element method of [3] is applied by taking

the solution of the �rst stage obtained in [2, 5] as the starting point in the Tikhonov minim-
ization functional in order to obtain better approximations of refractive indices and shapes of
objects on the locally adaptively re�ned meshes. In our recent publication [4] is shown that
we can simultaneously reconstruct three components of interest of targets: their refractive
indices, shapes and locations.

(a) (b) (c) (d)

Figure 1: Results of the reconstruction on the second stage from [4]. (a) xy-projection, (b)
xz-projection, and (c) yz-projection of the three times re�ned (optimal) mesh; (d) Computed
image of the blind heterogeneous target (doll, air inside) on that mesh. Thin lines indicate
correct shape.

2 Statement of Forward and Inverse Problems

On the �rst stage we have considered in [2, 5] the problem of the reconstruction of the spatially
distributed dielectric constant εr (x), x ∈ R3, from blind experimental data which was the
unknown coe�cient in a wave-like PDE

εr (x)
∂2E2
∂t2
= ∆E2. (1)

To reconstruct εr (x), we have used the approximately globally convergent algorithm of [1].
The notion of the approximate global convergence was introduced in [1]. It is well known that
conventional least squares cost functionals for CIPs are non convex and typically have many
local minima. Hence, given a CIP, the �rst question to address in its numerical treatment is:
How to obtain a good approximation for the exact solution without any a priori knowledge of
a small neighborhood of this solution? Since it is di�cult to address that question a certain
reasonable approximation was made in [1]. Because of this approximation a room is left
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(a) Perspective view (b) Front view (c) Side view

(d) Zoom, perspective (e) Zoom, front (f) Zoom, side

Figure 2: Results of the reconstruction on the second stage from [4]. Three views and zooms
of the reconstructed blind heterogeneous target of Figure 1. Thin lines indicate correct shape.

for a re�nement of results. Thus, a locally convergent numerical method can be used for a
re�nement of the solution obtained on the �rst stage.

In [4] we use an adaptive �nite element method of [3] in order to improve images obtained
on a �rst stage. Let Ω ⊂ R3 be a convex bounded domain. In [4] we model the electromagnetic
wave propagation in an isotropic non-magnetic space with µ = 1 inR3 with the dimensionless
coe�cient εr (x),which describes the spatially distributed dielectric constant of the medium.
We consider the following Cauchy problem for the electric �eld E:

εr
∂2E
∂t2
+ ∇ × (∇ × E) = (0,δ (z − z0) f (t ),0), in R3 × (0,T ),

E(x,0) = 0, Et (x,0) = 0 in R3,
(2)

where f (t ) . 0 is the time-dependent amplitude of the component E2 of the incident plane
wave, which is originated at the plane {z = z0} and propagates along the z−axis. The function
E(x,t ) in (2) represents the voltage of the electric �eld E(x,t ) = (E1,E2,E3) (x,t ) . In our
experiment the component E2 corresponds to the electromagnetic pulse which is sent into
the medium. Thus, in (2) and in our computer simulations of [4] the incident �eld has only
one non-zero component E2 (x,t ). This component propagates along the z-axis until it reaches
the target, where it is scattered.

We impose the following conditions on the function εr (x)

εr (x) ∈ Cα
(
R3

)
, εr (x) ∈ [1,d], εr (x) = 1 for x ∈ R3 \ Ω, (3)
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where d = const . > 1. We a priori assume the knowledge of the constant d . This means the
knowledge of the set of admissible coe�cients in (3). However, we do not impose small-value
assumptions on the unknown coe�cient εr (x). Here Cα ,α ∈ (0,1) is the Hölder space. Let
Γ ⊂ ∂Ω be a part of the boundary ∂Ω and also Γ be a part of a plane.

Coe�cient Inverse Problem (CIP). Suppose that the coe�cient εr (x) satis�es conditions
(3) and that Ω ∩ {z = z0} = ∅. Determine the function εr (x) for x ∈ Ω, assuming that the
following function g(x,t ) is known for a single incident plane wave

E(x,t ) = g(x,t ), ∀ (x,t ) ∈ Γ × (0,∞) . (4)

3 Reconstruction

Figures 1–2 display 3-D images of reconstruction as well as corresponding adaptively locally
re�ned meshes of the heterogeneous object (doll, air inside) of [4]. Heterogeneous targets
present models for explosive devices in which explosive materials are masked by dielectrics.
These �gures also show estimates of sizes of our object in the z-direction. In all reconstruc-
tion cases of [4] we have obtained a signi�cant improvement of the image quality after the
application of the adaptivity technique on the second stage compared with the results of the
�rst stage.
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Abstract

An inverse problem (IP) can be seen as a system consisting of a governing partial
di�erential equation (PDE) and an additional measurement. The last one can be elimin-
ated by applying the measurement operator to the PDE. Afterwards a suitable variational
formulation in appropriate function spaces can be derived. In this way the existence and
uniqueness of a solution to the IP can be addressed.

Key words: inverse source problem, parabolic PDE
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1 Introduction

Inverse problems are typically ill-posed in the sense of Hadamard i.e. there is either no clas-
sical solution, or there are more ones, or a solution might not depend continuously on the data.
To prove global in time existence and uniqueness of a solution turn out to be a di�cult task.
Another important goal in IPs is to �nd a constructive algorithm for �nding a solution. The
usual techniques for IPs are based on a suitable parametrization tacitly assuming continuous
dependence of a parametrized solution on the parameter. A error/cost functional describing
the di�erence between the parametrized and the exact solution at a given measurement place
is minimized. The typical feature is lack of convexity of the cost functional, which leads to
multiple local minima’s. One can try to regularize the minimization problem by adding a
suitable term to the functional in order to enforce its convexity, cf. [1]. Then the existence
of a unique solution to the minimization problem can be obtained by means of the theory of
monotone operators [2]. This later task can be solved numerically by adequate approximation
techniques, such as the steepest descend, Ritz or Newton or Levenberg-Marquardt method.

We describe an another technique for IPs. We see the IP as a system consisting of a PDE
and a measurement. We eliminate the measurement and derive a corresponding variational
formulation. We apply the semi-discretization in time to address the existence and uniqueness
of a solution to the IP. We demonstrate this approach on the following two settings.
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2 Problem 1

We study an identi�cation problem of a solely time-dependent source in a multi-dimensional
heat equation accompanied with mixed (Dirichlet and nonlinear evolutionary) BCs. We con-
sider a bounded domain Ω ⊂ Rn , n ≥ 1 with su�ciently smooth boundary Γ, which is split
into two non-overlapping complementary parts ΓD and ΓN . The inverse source problem con-
sists of �nding (u (x ,t ),h(t )) obeying



∂tu (x ,t ) − ∆u (x ,t ) = h(t ) f (x ) in Ω × (0,T ),
−∇u (x ,t ) · ν = ∂tu (x ,t ) + σ (u (x ,t )) on ΓN × (0,T ),

u (x ,t ) = 0 on ΓD × (0,T ),
u (x ,0) = u0 (x ) for x ∈ Ω,

(1)

The symbolν denotes the outer normal vector associated with Γ. The unknown time-dependent
function h(t ) will be determined from the following additional measurement

m(t ) =

∫

Ω
u (x ,t )dx , t ∈ [0,T ]. (2)

3 Problem 2

Find the unknown couple (u,h) obeying


ut (x ,t ) − ∆u (x ,t ) = h(t ) f (x ) + α (u (x ,t )) + β (x ,t ) in Ω × (0,T ),

∇u (x ,t ) · ν = 0 on Γ × (0,T ),
u (x ,0) = u0 (x ) for x ∈ Ω,

(3)

where Ω ⊂ Rn , n ≥ 1 is a bounded domain with a su�ciently smooth boundary Γ.
The data functionsu0, f ,α ,β are given. The unknown purely time-dependent source term

h(t ) will be recovered from the following measurement on the boundary

m(t ) =

∫

Γ
u (x ,t )dx , t ∈ [0,T ]. (4)
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Abstract

The proper parameterization of structural shape which is suitable for creating struc-
tural form and shape optimal design is a great challenge. The demand for large design
spaces with large and very large numbers of design parameters is in con�ict with the ro-
bustness of the numerical model. There is a need for regularization. The currently most
successful techniques which overcome those burdens and, simultaneously, are most intu-
itive and easy to be used are so-called �lter techniques. They directly use the coordinates
of the discretization nodes as design parameters. Filters are applied to smooth the shape
sensitivity �elds as the generator of the design update towards the optimum. However,
the �lters are much more than mathematical means to prevent numerical problems such
as mesh distortion or checker board patterns. Even more important, from the point of
view of shape design they deal as a design tool to controlling the local and global shape
properties. The actual presentation will show that �ltering is equivalent to the implicit
de�nition of standard spline models. Impressive applications in the �elds of CSD and
CFD with problem sizes up to 3.5 million design parameters can easily be handled by
this technique.

Key words: Shape optimization, sensitivity �ltering, morphing, structural optimization,
CFD optimization

1 Introduction

Sensitivity �ltering is a well-established and very successful procedure in discrete topology
and shape optimization. It is used to regularize the optimization problem by introducing an
additional �lter length scale which is independent of the discretization. The �lter is both, a
design tool controlling local shape or density distribution and a mean to prevent numerical
problems such as mesh distortion or checker board patterns. Together with adjoint sensitivity
analysis to determine the discretized shape gradient, the �lter technique is a most powerful
optimization procedure and successively applied to the largest optimization problems known.
Filtering is the key technology for using the vertices of even the �nest discretization mesh dir-
ectly as design handles for discrete shape optimization. In contrast to standard shape morph-
ing techniques and CAD methodologies no other design handles are used.
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Among those techniques which do not use CAD parameters to parameterize shape there
are meshfree and node-based or parameter-free methods which means “free of CAGD para-
meters” (Le et al. 2011; Scherer et al. 2010; Hojjat et al. 2014), the traction method (Azegami
and Takeuchi 2006), for CFD problems (Pironneau 1984; Jameson 1995, 2000, 2003; Moham-
madi and Pironneau 2000, 2004; Stück and Rung 2011).

2 Continuous Shape control by using �lters

We start by introducing an additional �eld p. This serves as the control which steers the
evolution of shape. In analogy to splines the control �eld can be identi�ed as the continuous
equivalent to the convex hull which is discretized by control nodes. As with splines where
the coordinates of the control nodes are the design variables, now, the control �eld represents
the design degrees of freedom which drive the shape.

The considered shape optimization problem states as:

min
p

f (x ,z (x ,p) ,u (x ,z (x ,p)))

s.t.: R (x ,z (x ,p) ,u (x ,z (x ,p))) = 0
дj (x ,z (x ,p) ,u (x ,z (x ,p))) ≤ 0 ; j = 1, . . . ,m

(1)

where f and дj are the objective function and constraints and R are the state equations which
may be non-linear. There are four �elds describing the state u, the surface coordinate x , the
geometry z as well as the design control �eld, p, see Fig. 1. For the sake of simplicity, (1)
is formulated in 1D geometric space. As a consequence, the geometry z is a function of the
one spatial surface coordinate x and the design control p. Extended to 3D, (1) represents
the classical view at a surface controlled shape optimization problem following the ideas of
Hadamard. Then, the shape relevant modi�cations of geometry z are identi�ed as in the nor-
mal direction to the surface spanned by surface coordinates x1 and x2.

The geometry z at x0 is generated from the design control �eld p (x ) by a �lter operation
as integration over the surface Γ with �lter function F0 of radius r and center at x0:

z (x0) =

∫

Γ
F0p dΓ =

∫ x0+r

x0−r
F (x ,x0,r ) p (x ) dx ;

dz |x0
dp��x1 = F (x1,x0,r ) (2)

where
∫ x0+r

x0−r
F0 dx = 1 and F0 = 0 if x < x0 − r or x > x0 + r (3)

Applying the chain rule of di�erentiation the derivative of a response function f with respect
to the design control p at x1 is given as

df
dp

�����x=x1 =
∫

Γ

df
dz

dz
dp��x1 dΓ =

∫

Γ

df
dz F

(x1,x ,r ) dΓ =
∫

Γ

df
dz A1 dΓ (4)

The geometry gradient df
dz is �ltered by the adjoint �lter function A1 where the center co-

ordinate x1 and the free coordinate x are exchanged compared to F1.
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3 Shape discretization and discrete sensitivity �ltering

The design control �eld and the geometry derivative are discretized using shape functions Nj
related to design and geometry parameters pj and zi , respectively:

p = Njpj = Nj (x ) pj

df
dz = Ni

df
dzi

(5)

The discrete versions of (2) and (4) are:

zi =

∫

Γ
FiNjpj dΓ = Bi jpj

df
dpj
=

∫

Γ

df
dzi

NiAj dΓ =
∫

Γ
FiNj dΓ df

dzi
= Bi j

df
dzi

(6)

On regular grids together with symmetric �lter functions Fi = Ai the �lter operator matrix
Bi j is symmetric as well.

Figure 1: Shape optimization of the side mirrors for drag reduction of the complete car refer-
ring to the center column of Fig. 26. Longitudinal section of the mirror body. The shape is
morphed whilst the displayed feature lines are maintained. The shape of the mirror itself (left
straight line) has been constrained to guarantee the usability. Therefore, the optimizer was
prevented to simply remove the mirrors to reduce drag.

4 Choice of �lters and shape functions, relations to splines

Linear hat functions are the simplest choice for �lter and shape functions F and N . Filtering
a linear shape function by a linear �lter results in a cubic geometry. As a matter of fact the
control �eld is the continuous equivalent of spline control polygons. For the special case of
regular grids, linear hat functions for F = N a cubic B-spline geometry is derived from a
piecewise linear control �eld. The �lter technique is equivalent with the subdivision spline
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technique sharing important properties with general splines.

As the �lter modi�es the gradient vector the �ltering e�ect can be exploited best by �rst
order gradient methods. Those methods converge to that local minimum which is character-
ized by a shape mode wave length that is not smaller than the �lter radius or the variance
in case of Gaussian �lters. The �lter shape is not important at all. That allows to using any
kind of �lter for the sensitivity �ltering as long as Bi j remains non-singular. In turn, we can
conclude that every simple gradient method with sensitivity �ltering will converge to a solu-
tion of the original, unmodi�ed problem. For non-convex problems, the choice of �lter will
a�ect which local optimum will �nally be found. This is the intended e�ect which helps to
e�ciently explore the design space.

5 Selected Example

The technique is successfully applied to all kind of structural and �uid shape optimization
problems. As a representative example the shape optimization of the VW Passat side mirrors
is presented which was done in close cooperation with Volkswagen and others partners of
the EU-project FLOWHEAD, Fig. 1. The goal was to reduce the drag of the complete car
by shape modi�cations of the mirrors only. That gives 32,000 design parameters for each
mirror, i.e. 64,000 in total. A complete model of the car had to be simulated in an appropriate
numerical wind tunnel using OpenFoam for CFD simulation, an adjoint solver provided by
project partners, and CARAT++ for optimization which is the own optimization and structural
simulation code. In further applications, the complete car body had been optimized which
comes together with up to 3.5 Mio shape parameters.
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Abstract

Key words: Population balance equation, Aggregation, Breakage, homotopy, asymptotic
An area of considerable industrial concern is the phenomenon of particulate aggregation

and breakage in chemical and biochemical process systems such as crystallization [1], �uidiz-
ation [2] and activated sludge �occulation [3]. Population balance equations (PBEs) are widely
used to describe the evolution of the particle size distribution (PSD) in the above mentioned
processes [1, 3]. These PBEs are integro-partial di�erential equations which seldom have
analytical solutions. This study details several homotopy approaches namely, the Homotopy
Perturbation Method (HPM), the Optimal Homotopy Asymptotic Method (OHAM) and the
Homotopy Analysis Transform Method (HATM) to obtain approximate analytical solutions
for the Population Balance Equation (PBE) involving particulate aggregation and breakage.
Using symbolic computation several case studies have been considered and the numerical
results have been compared with the analytical solutions obtained from the literature.

The most common approximate solutions for di�erential equations in the literature in-
volve various asymptotic expansions. There are, however, practical problems associated with
this. Instead of trying to develop the asymptotic solutions of a di�erential equations, it is often
more convenient to �nd an integral expression for the solution and then seek an asymptotic
expansion afterwards. This thought gives rise to some novel methods such as Homotopy Per-
turbation method (HPM) [5] and more recent frequently used variants such as Optimal Homo-
topy Asymptotic method (OHAM) [6] and Homotopy analysis transform method (HATM) [7],
which are based on the same homotopy theory.
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We consider a problem with simultaneous aggregation and breakage for which analyt-
ical solution is available [4]. As can be seen in Figure 1, solutions provided by all the methods
match reasonably well with the analytical solution. In Figure 1, it can be observed that a com-
paratively better match with the analytical solution is obtained via OHAM. This is because
OHAM additionally uses the best approximation (or optimal error) mechanism which is ob-
tained by optimizing the residual to determine fabricated parameters. OHAM may be used
for other more complex realistic physical problems in the future.

Figure 1: The solution are given for S = 0.25 at t = 1.
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Abstract

The present paper aims to evaluate the impact absorption characteristics of polygonal
cross sections tubes under a dynamic axial compression loading through a numerical
comparison. The original tubes behaviour are compared to tubes with patterned win-
dows on their �at walls. The windowed tubes shows a signi�cant weight reduction and
a decrease in the initial peak load while keeping a similar speci�c energy absorption.

Key words: Energy absorption, Finite Element Analysis, Progressive Buckling

1 Introduction

Thin-walled tubes show high capability to absorb impact energy, specially when one keeps in
mind the more or less straightforward manufacturing process. The dissipation characteristics
of thin-walled tubes are commonly related to the progressive folding mechanism and where-
fore it is fundamental to guarantee local buckling leading to a maximal energy absorbed.

For thin-walled tubes, the addition of patterned windows in the side walls in�uence the
mechanism of deformation and the absorbed energy as shown in [2]. Therefore, the present
paper deals with the behaviour of square and hexagonal windowed tubes under an axial com-
pression, comparing the initial peak load as well as the speci�c energy absorption to the
original geometries.

2 Progressive Buckling Analysis

The buckling modes of square tubes are described by [3], where three distinct dissipation
regions are de�ned. In the same way, [1] presented a study concerning the dissipation energy
and the mode of failures of polygonal thin-walled tubes under compression describing the
total amount of energy for one fold formation as

Wi =W1 +W2 +W3 = 2Mp

[
π (h + 8c ) + h2

r

]
, (1)

where W1, W2 and W3 are respectively the energies dissipated by: the stationary horizontal
hinge lines; the �attening of the initial corners of shell; the travelling vertical hinges. Mp is
the plastic bending moment, h is the fold height and c is the side length.
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(a) Square (b) Cut Square (c) Hexagon (d) Cut Hexagon

Figure 1: Di�erent polygonal models subject to axial compression load.

Fig.1 shows the deformed �nite element models for the original and windowed square
and hexagonal tubes when subjected to a 500kд mass at 5m/s . The numerical analysis have
been developed in LS-Dyna 9.71 and consider a strain rate sensitive material via the Cowper-
Simonds constitutive equation. The simulation results are presented in Tab. 1, where the peak
load is the maximum force applied on the structure before progressive buckling starts.

Table 1: Numerical Results.
Model Peak Load (kN) Energy Absorbed (kJ) SEA (kJ/kg)

Original Square 200 5.09 15.05
Windowed Square 138 4.85 18.29
Original Hexagon 132 4.47 8.27

Windowed Hexagon 94 3.57 7.56
SEA - Speci�c Energy Absorption

For booth geometries the initial peak load decreases for the windowed tubes, owing to
the reduction of the cross section area and consequently of the yielding resistance. However
the e�ciency of the windowed tubes is specially highlighted in the square tubes where the
travelling hinges plays an important hole in the absorption capacity.

There is a lost of e�ciency for the hexagonal windowed tubes due to the stability loss
when the �rst fold is complete. To improve the e�ciency of the hexagonal tubes the position
of the windows cuts request further studies to take into account the deformation mechanism
of the structure to guarantee stability during the crushing.
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Abstract

In some applications one can measure only the magnitude of the scattered wave �eld
but cannot measure the phase. In this case one deals with the problem of the reconstruc-
tion of an unknown coe�cient of a wave-like PDE from the modulus of the scattered
wave measured on a frequency interval outside of the scatterer. Recently the author has
proven some uniqueness theorems for these inverse problems and they will be presented
on the talk.
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Abstract

A numerical study was performed to determine the turbulent heat transfer in the
air-gap of an enclosed rotor-stator system. Rotor-stator interaction has been modeled
using sliding mesh (SM) and multiple reference frame techniques (MRF). With taking
into account rotational Reynolds number Re = ΩR2/ν and air-gap ratioG = s/R, the heat
transfer rate and the �ow characteristics in the gap between the disks were calculated. A
new cooling solution was then investigated. In fact, the presence of holes in the rotor has
been examined and it was found that the addition of the holes in the rotor is advantageous
for the heat transfer as air is allowed to enter into the air-gap through the holes, resulting
in a net radial �ow in the gap region between the rotor and the stator. For the case
investigated, the maximum increase in the heat transfer was up to 23% with an increase
in the rotor torque equal to 18%.

Key words: Heat Transfer, Holes, Multiple References Frame, Rotor-Stator, Sliding Mesh

1 Introduction

Heat transfer in discoidal systems is crucial in many �elds of engineering especially in disc
type electrical machines [1, 2]. In an e�ort to avoid damage of components arising from local
high temperature due to electromagnetic losses, the designers must take into account the
e�ect of heat transfer, and pay essential attention to the shape, rotational speed and gap size
between rotor and stator. In particular, the magnets should be su�ciently below the critical
temperature Tc = 150◦C to avoid demagnetization. To the best of our knowledge, no study
has been reported regarding the presence of holes in the rotor disk. So, this paper presents
a numerical study of the local heat transfer on the rotor surface in the air-gap of a discoidal
rotor-stator system, in which air is allowed to pass through the holes into the air-gap.

2 Problem setup

Figure 1 shows the problem con�guration where the left disk is the rotor and the right one is
the stator. The SST k−ω model has been used for turbulence modeling. The surface temperat-
ure of the rotor, the stator and the cover are kept at 100◦C, 120◦C and 50◦C, respectively. The
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boundary layers around the solid walls were designed to obtain a y+ value below 5. The aim
of this study is to exam the thermal performance of the discoidal system with and without
the presence of holes in the rotor. Rotor-stator interaction has been modeled using multiple
reference frame and sliding mesh approaches where the latter case takes into account the ef-
fect of the changing position of the holes during rotation. The air-gap size is determined by
the air-gap ratio, G = s/R, with R equal to the radius of the rotor.

Figure 1: Problem con�guration. Figure 2: Velocity vectors inside the hole for
Re = 7.16 × 104 and G = 0.02.

3 Results and conclusion

Table 1 indicates that the addition of the holes in the rotor is advantageous for the heat trans-
fer. To give more insight about the �ow pattern inside the hole, the velocity vector for SM
method in a meridional plane of the rotor has been shown in the �gure 2.

Table 1: Heat transfer rates (W) for Re = 7.16 × 104 and G = 0.02.
Without Holes With Holes

MRF SM
Rotor Wall 16.0 21.0 21.1
Stator Wall 24.6 31.9 31.0
Cover Wall −40.6 −52.9 −52.1

With the presence of holes in the rotor, the heat transfer rate could be enhanced for this
speci�c rotor-stator combination. Further optimization is under investigation.
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Abstract

In this study, we have developed a multiscale �nite element (FE) modelling frame-
work to explicitly account for the polycrystalline microstructure and sub-micron precip-
itate structure for a P91 tempered martensitic steel. A dislocation-mechanics based and
length-scale dependent crystal plasticity model has been used to represent slip based in-
elastic deformation in the material. Homogenisation analysis is performed to connect
FE models at di�erent length scales, indicating a strong e�ect of the sub-micron geo-
metries on dislocation accumulations. Softening e�ects with respect to precipitate and
lath coarsening are identi�ed and quanti�ed at the macroscopic scale. The results can be
further used to implement a component level constitutive law which phenomenologic-
ally takes the microstructural e�ects into account. The present multiscale FE simulations
have been validated through the use of uniaxial tensile test data at room temperature.

Key words: Multiscale modelling; Precipitate hardening; Strain gradient crystal plasti-
city; Dislocation accumulations; Tempered martensitic steels

1 Introduction

Tempered martensitic steels containing 9–12% Cr are widely used as structural materials in
critical power plant components operating at elevated temperatures. To ful�l the current and
future needs for safety, e�ciency and �exibility of fossil fuel �red power plants, there is a re-
quirement for rigorous and accurate structural integrity assessment procedures, taking into
account recent advances in multi-scale computational and experimental techniques for a bet-
ter understanding of inelastic deformation and failure mechanisms (operating at the micron
and sub-micron scale). Tempered martensitic steels have a complex microstructure exhibit-
ing a hierarchical arrangement consisting of prior austenite grains, packets, blocks, laths and
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precipitates. The strengthening/hardening contributions of the hierarchical microstructure in
tempered martensitic steels have not yet been fully understood. The present study addresses
a multiscale modelling method to quantify precipitate hardening in a P91 martensitic steel by
means of crystal plasticity based �nite element (FE) analysis [1, 2].

2 Bottom-up multiscale model for martensitic steels

Figure 1 shows the multiscale FE model developed for a P91 martensitic steel. A bottom-up
strategy has been used to connect the FE models at di�erent length scales such that micro-
structural e�ects on the mechanical performance of the material/component can be examined.

Figure 1: Illustration of microstructure and multiscale FE model for P91.
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Abstract

The present paper deals with the use of wavelet theory in the ill-posed inverse prob-
lem of di�use optical tomography. The rationale behind this choice is to exploit the �l-
tering potential of wavelets to the noisy cost function gradient, the latter being an essen-
tial ingredient in the optical properties reconstruction process. The proposed algorithm
is based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method with an inexact line-
search method, where the continuous cost function gradient is computed with the adjoint
state method. After decomposition of this gradient with the discrete wavelet transform,
�ltering is performed through a thresholding rule on the detail coe�cient vectors.

Key words: BFGS, �ltering, inverse problem, parameterization, wavelet
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1 Introduction

The Optical Tomography (OT) consists in reconstructing optical property maps of heteroge-
neous semi-transparent media from radiative measurements obtained with the help of sources
and sensors located on the edges of the medium. Two mathematical descriptions are com-
monly used to predict the propagation of optical radiation through the participating medium,
namely the Radiative Transfer Equation (RTE) based model and the Di�use Approximation
(DA) model. The DA model, which is considered in this paper, assumes that the media is
poorly absorbing and highly di�using. Applications of the OT with the DA model typically
concern the detection of cancerous tumors in tissues such as the breast. It is also planned to
use such method to characterize radiative properties of materials such as metallic open-cell
foam, allowing the systematic design of materials in thermal and energetics engineering.

The forward model associated to the di�use optical tomography problem is given by [1]:

−∇ ·
(
[n(κ + σ )]−1 ∇φ

)
+

(
κ +

2iπν
c

)
φ = 0 in D (1)

φ +
A

2γ
[n(κ + σ )]−1 ∇φ · n =

I

γ
1[ζ ∈∂Ds ] on ∂D (2)
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with φ : D → C is the photon density, κ and σ are, respectively, the absorption and reduced
scattering coe�cients, and I denotes the prescribed radiative intensity on ∂Ds . Parameters
γ , which only depends on the dimension ofD, n, and A, which characterizes the re�ection at
the boundary, are given. Finally, ν is the source modulation frequency and c is the velocity of
the light. The di�erence, in the least squares sense, on sensor locations between the state φ
and experimental measurements is integrated to a cost function j to be minimized. Thus, the
solution of the inverse problem reads: “Find the functions κ∗ and σ ∗ such that j (κ∗,σ ∗) < v”,
where v integrates variances of errors for all measurements.

2 Optimization

The minimization of the cost function is carried out by the Broyden-Fletcher-Goldfarb-Shanno
algorithm associated to a fast inexact line-search. This algorithm relies on the gradient com-
puted through the solution of the additional adjoint problem. In [2], the cost function gradient
are written in a continuous way before being discretized choosing a �nite element basis for
the parameterization of the optical properties. These continuous gradients are given by:

∇κ j (x ) = <
(
φ (x )φ∗ (x ) − n [n(κ + σ )]−2 ∇φ (x ) · ∇φ∗ (x )

)
(3)

∇σ j (x ) = −n [n(κ + σ )]−2< (∇φ (x ) · ∇φ∗ (x )) (4)

3 Filtering

In reality, the computed gradients present high frequency �uctuations due to the noise com-
ing from measurements and propagating through the adjoint variable. So far, regularization
strategies concerned: (i) parameterization based on a coarser mesh, performed using projec-
tion of the state and adjoint variables on the coarse mesh, and (ii) the use of Sobolev inner
products when extracting the cost function gradient. The strategy implemented in this paper
is based on the wavelet decomposition of functions f ∈ L2 (Rn ) applied to the cost function
gradients. Concretely, the gradient maps are discretized with 2nJ values. Then, the dyadic
wavelet transform [3] is computed for scales 2j , j = 1, . . . , J . A thresholding rule is �nally
considered on the detail coe�cient vectors before reconstructing the �ltered gradient. The
study concerning the selection of the wavelet and thresholding method is in progress.
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Abstract

A standard �eld-circuit coupled magnetoquasistatic model withn voltage-driven coils
corresponds to an index-2 system for which straightforward time integration may lead to
increasing errors for decreasing time steps. An index-1 reformulation brings up a dense
system. The solution thereof becomes feasible when applying the Woodbury formula for
rank-n corrected matrices.

Key words: �eld-circuit coupling, electromagnetic �eld simulation, time stepping, nu-
merical stability

1 Introduction

Field-circuit coupled models are extensively used in electrotechnical and electronic design
procedures. After �nite-element (FE) discretisation, the �eld-circuit coupled magnetoquasi-
static formulation in terms of the magnetic vector potential (MVP) reads[

sMσ + Kν −Xstr
sXT

str Rstr

] [
_a
istr

]
=

[
0
ustr

]
, (1)

where Kν and Mσ are the FE reluctance-loop and conductance matrices, s denotes the (dis-
crete) time derivative, Xstr distributes the currents istr applied to the n coils to the computa-
tional grid, _a collects the degrees of freedom (DoFs) for the MVP, Rstr is an n-by-n diagonal
matrix of the coil resistances and ustr are the voltages applied to the coils. Typically (1) is
solved for given currents

(sMσ + Kν )
_a = Xstristr (2)

and the voltages are obtained by postprocessing. In [2, 3], it is shown that (1) for given cur-
rents istr is an index-2 problem and leads to unacceptably large errors when standard time
integrators (e.g. implicit Euler) are used with too small time steps.
The favourable index-1 property is guaranteed by the alternative formulation

(
Kν + s (Mstr +Mσ )

)
_a = XstrR−1strustr , (3)
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Figure 1: Small inductor with voltage-driven coil; solution for voltage and current.

where Mstr = XstrR−1strX
T
str is considered as an n-rank correction to Kν + sMσ . The additional

term spoils the sparsity of Kν + sMσ . This seriously diminishes the computational e�ciency
of the �eld-circuit coupled formulation. For that reason, (2) is favoured over (3), despite of
the disastrous time-integration error.

2 Dedicated System Solution

At every time step, a system of the form (3) has to be solved. The Woodbury formula allows
to reorganise this procedure into the application of

(
I −WstrZ−1strsX

T
str

)
(Kν + sMσ )

−1 (4)

to a vector. Here, Wstr = (Kν + sMσ )
−1Xstr is a precomputed set of unit discrete �eld �uxes

(�uxes arising from unit currents in the coils), Lstr = XT
strWstr is the inductance matrix and

Zstr = Rstr + sLstr is the system’s impedance. Compared to the application of (Kν + sMσ )
−1,

the application of (4) only requires 2n additional vector-vector operations and the solution of
an n-by-n system. Hence, it is only marginally more expensive than solving (1). Moreover, a
standard multigrid algorithm for (Kν + sMσ )

−1 remains applicable. The proposed approach,
however, requires the precomputation of Wstr, which amounts to solving n systems with
matrix Kν + sMσ on beforehand. This is feasible as long as n is substantially smaller than the
number of time steps and Kν +sMσ does not change over time, e.g. due to nonlinearities. The
approach is illustrated for an inductor example (Fig. 1).
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Abstract

We present a parallel version of the otherwise sequential double sweep precondi-
tioner, used to accelerate the convergence of an optimized Schwarz domain decompos-
ition method. The method is based on the same sweeping strategy, yet applied on a
shorter scale and in parallel, on distinct groups of subdomains. The modi�ed algorithm,
unlike the original one designed for layered decompositions, has the advantage of being
directly applicable to cyclic decompositions as well. The whole method is described in
terms of combinations of transport operators and is therefore suitable to both Helmholtz
and frequency-domain Maxwell problems.

Key words: Domain Decomposition, Preconditioner, Propagation, High Frequency.

1 Introduction

The idea of sweeping for the solution of wave propagation problems in the frequency domain,
of the form (∆+k2)u = 0, is quite natural, since it somehow mimics the physical phenomenon
of a wave propagating inside a medium. It is therefore not surprising that techniques inspired
by this observation have proved successful [1, 2]. In the slightly di�erent context of Domain
Decomposition solvers for these problems, we have recently proposed the double sweep pre-
conditioner for the non-overlapping optimized Schwarz algorithm [3]. A limitation of the
method is the sequential nature of the sweeping process that makes the iterative part of the
solution less scalable on parallel architectures—the factorization of the subproblems remain-
ing fully parallel. This paper addresses that issue, by proposing a modi�cation of the algorithm
to partially restore its parallelism.

2 Algorithms

The double sweep preconditioner was originally designed as the inverse of the iteration oper-
ator in the particular case of a layered decomposition, supposing that perfectly non-re�ecting
operators are used as transmission condition. In that case, the matrix that represents the it-
eration operator is easy to invert. Since it is, like its inverse, made of transport operators that
involve the solution of subproblems, we give it an interpretation in terms of a combination of
such subproblems. It is a double sequence of solves, that we call the forward and backward
sweeps. That inverse is then used to precondition more complex problems [3].
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Unlike the standard algorithm, the application of the preconditioner is sequential and ex-
ploits no more than 2 CPUs simultaneously, which is a very suboptimal use of the resources
if more CPUs are available. By performing the sweeps independently and concurrently over
smaller groups of domains, we still bene�t of the long range sharing of information provided
by the sweeps, while reducing the idleness of the CPUs (Figure 1). Introducing a cut in a cyclic
decomposition makes it topologically equivalent to a layered one, making the preconditioner
readily applicable.
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Figure 1: Timelines of the double sweep preconditioner application without cuts (left) and
with 2 cuts (right). The white diamonds indicate solves performed in the iteration operator;
the black circles and squares indicate solves in the forward and backward sweeps, respectively.

Table 1 shows the number of iterations and an estimation of the normalized time required
to attain convergence (| |r | |/| |r0 | | < 10−4) for the solution of a Maxwell problem in the chal-
lenging COBRA cavity benchmark. The standard algorithm (np) failed to converge, while the
(wall-clock) time to solution with the preconditioned algorithm (ds) decreases when cuts are
added, though too many cuts are detrimental (the reported times do not include subproblem
factorization).

#CPU 2 4 6 8 14 22

Nc 0 1 2 3 6 10
N (ds)

it 44 74 105 135 230 354
T (ds)

sol 2024 1702 1680 1485 1610 1416

N
(np)
it > 1000

T
(np)
sol > 16016 > 8008 > 5339 > 4004 > 2288 > 1456

Table 1: COBRA test case for Maxwell with 32 subdomains (Nc cuts) at k = 314.16.
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Abstract

Co-simulation of power system dynamics requires the choice of proper boundary
conditions at the interface between the subdomains, which greatly in�uences the rate of
convergence of the co-simulation relaxation iterations. In this paper, Dirichlet bound-
ary conditions are compared to disjoint and coupled impedance boundary conditions in
terms of the mean number of relaxation iterations. The study is illustrated by a test
case in which the power system under study is divided into two subdomains, connected
through three connection busses. The subdomains are represented with di�erent mod-
eling assumptions, simpli�ed and full-transient models respectively.

Key words: Co-simulation, Boundary Conditions, Power Systems

1 Co-Simulation of Power System Dynamics

Power systems dynamic models are generally classi�ed in two categories depending on the
time-scale of the phenomena under study: Phasor-Mode (PM) models and ElectroMagnetic
Transients (EMT) ones. In PM models, the three-phase system is represented with a single-
phase equivalent and the dynamics are approximated by a succession of sinusoidal regimes
(phasors with time-varying amplitude and phase). The EMT models take into consideration
virtually any fast transient phenomenon. Both models are represented by sets of Di�erential
Algebraic Equations (DAEs). Co-simulation combines the speed of PM models with the details
of EMT ones [1]. Improvements in accuracy [2] and convergence [3] still require research.

2 Coupled Boundary Conditions

Fig. 1 represents the test-case power system. It was subdivided into two subdomains, con-
nected through N = 3 boundary busses 4041, 4044 and 4042. The expression Ī = Y0V̄ + Ī0 is
the impedance boundary condition that links the boundary current vector Ī with the vector
of boundary voltages V̄. If coupled boundary conditions are considered, Y0 is an NxN full
matrix that can be either predetermined or calculated on-the-�y.
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Figure 1: Boundary conditions for PM and EMT subdomains.

Fig. 2 shows the number of relaxation iterations obtained on a single-bus connection test case
when varying the ratio between the estimated admittance ŷemt and the true value y∗emt .
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Figure 2: Relaxation iterations sensitivity to the value of the boundary admittance.

In the full paper the convergence will be assessed when either disjoint or coupled boundary
conditions are used, the latter being predetermined or calculated on-the-�y.
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Abstract

This work describes an automatic method to anisotropically remesh an input bad
quality mesh while preserving sharp features. We extend the method of [1], based on
the lifting of the input mesh in a 6D space (position and normal), and the optimization
of a restricted Voronoï diagram in that space. The main advantage of this method is
that it does not require any parameterization of the input geometry: the remeshing is
performed globally, and triangles can overlap several input charts. We improve this work
by modifying the objective function minimized in the optimization process, in order to
take into account sharp features. This new formulation is a generalization the work of [2],
which does not require any explicit tagging of the sharp features. We provide e�cient
formulas to compute the gradient of our objective function, thus allowing us to use a
quasi-Newton solver [3] to perform the minimization.

Key words: geometry, mesh generation, restricted Voronoï diagram

1 Introduction

In this work, we focus on the problem of triangular surface remeshing. Our approach is based
on the optimization of restricted Voronoï diagrams, which is a generalization of Lloyd’s al-
gorithm for the sampling of surfaces. The remeshing is performed in two steps. First a regular
sampling of the input surface is generated using an optimization procedure on the sample
positions. Then the samples are connected with triangles to form the output mesh using the
restricted Delaunay triangulation of the samples. [1] embed the input mesh in 6D space by ap-
pending the normal coordinates to the vertex coordinates. An isotropic remeshing in this 6D
space is performed and then projected as an anisotropic remeshing in 3D space. We propose
an improvement of this approach, preserving the sharp features of the input mesh.

2 Contributions

[2] manage to take sharp features into account in the case of a remeshing in 3D space. Their
formulation however relies on the normal of the input mesh, and is therefore not applicable in
the context of a mesh embedded in 6D space, where triangles have a normal space rather than
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Figure 1: Parameters of our algorithm: the density controls how small the elements get in
regions where the normal varies, the anisotropy how thin the elements become in these re-
gions, and the feature sensitivity controls the in�uence of the sharp features. For comparison,
[1] provide anisotropy and density, while [2] provide feature sensitivity.

Figure 2: Remeshing a CAD model. The input is the raw mesh used to render the object (36k
vertices). The meshes of the various patches do not match on boundaries and cracks appear.
The remeshing is done in 75 seconds for 20k vertices.

a simple normal. We provide a new formulation based on the tangent space of a triangle, thus
generalizing their method for meshes embedded into any higher dimensional space. We also
provide new formulas for the gradient of the minimized objective function, using Reynold’s
transport theorem. Our �nal algorithm has three major parameters summarized on section 2,
controlling the feature preservation, and both the anisotropy and the density of the elements
in curved regions of the input mesh. As shown on Figure 2, our method successfully handles
bad quality input meshes with cracks and very stretched triangles. We neither use a paramet-
erization of the input mesh, nor require any manual or third party tagging of sharp features.
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Abstract

We present a procedure for optimizing curved two-dimensional �nite element meshes,
which aims at minimizing the distance between the mesh and the underlying CAD model.
The method allows both to ensure mesh validity and geometrical accuracy.

Key words: geometry, mesh generation, curved meshes, high-order methods

1 Introduction

The development of high-order numerical technologies for engineering analysis has been
underway for many years now. For example, Discontinuous Galerkin methods have been
largely studied in the literature, initially in a theoretical context, and now from the application
point of view. In many contributions, it is shown that the accuracy of the method strongly
depends on the accuracy of the geometrical discretization.

The aim of this paper is to present a method that enables to build geometrically accurate
curvilinear meshes.

2 Geometrical accuracy

Consider a model entity G and the mesh entity M that is supposed to discretize G. The �rst
questions to address are the following ones: how do we de�ne a proper distance d (G,M )
betweenG and M and how do we compute this distance e�ciently? Two principal de�nitions
for such distances have been proosed in the computational geometry literature, namely the
Fréchet distance and the Hausdor� distance [3, 4]. In this paper, we present a way to accur-
ately compute such distances between a curvilinear �nite element mesh and its underlying
CAD.

The next step is to minimize d (G,M ) in order to obtain a valid [1] and accurate high
order mesh. Figure 1 shows di�erent meshes of a NACA0012 wing where the optimization
procedure [2] was able to reduce the CAD-to-mesh distance by two orders of magnitude.
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(a) original straight-sided mesh (b) unoptimized quadratic mesh with invalid ele-
ments

(c) valid quadratic mesh without geometrical accur-
acy optimization [1]

(d) geometrically optimized valid quadratic mesh

Figure 1: Di�erent meshes.
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Abstract

This paper presents an e�cient method for the �nite element assembly of high or-
der Whitney elements. We start by highlighting the most time consuming parts of the
classical assembly technique. This approach can be reformulated into a computationally
e�cient matrix-matrix product. We conclude by presenting numerical results.

Key words: �nite element, high order, high performance computing, Whitney elements

1 Introduction

There is a growing consensus that state of the art �nite element (FE) technology requires,
and will continue to require, too extensive computational resources to provide the necessary
resolution for complex high-frequency electromagnetic compatibility simulations, even at the
rate of computational power increase. This leads us to consider methods with a higher order
of grid convergence than the classical second order.

2 Classic �nite element assembly

By applying the classical Galerkin FE scheme with a curl-conforming basis, the solution of
the time harmonic propagation of an electrical wave is computed using elementary integrals
T e
i,j , as developed in [2]. Each T e

i,j is giving the contribution of the degrees of freedom (DOF)
i and j of the mesh element e .

The classical FE assembly algorithm computes the T e
i,j terms for every pair of DOF i and

j on every element e of the mesh. It is worth noticing that increasing the basis order will have
two impacts on the computation time: each element will have more DOFs and the numerical
quadrature will require more points. These two phenomena will substantially increase the
assembly time, as shown in Figure 1.

3 E�cient assembly

The key idea of a fast assembly procedure is to compute all the T e
i,j terms using matrix-matrix

products, as proposed by [3, 4] for standard nodal Lagrange �nite elements. Indeed, this
operation has an excellent cache reuse and highly optimized implementations can be found.
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The T e
i,j terms can be computed by the product of two matrices. The �rst matrix will be

composed of the Jacobian matrices and non linear terms. The second matrix will be composed
only of the basis functions de�ned over the reference element.

It is worth noticing that depending on the mesh elements orientation, the curl-conforming
basis functions cannot simply be reordered, as for classical H 1 Lagrange bases. This situation
may be overcome by considering more than one reference element, as proposed by [1].

4 Numerical results

Figure 1 presents the assembly times of the classical and e�cient assembly procedures for an
increasing basis order. The FE matrix is assembled for a propagation problem into a wave
guide, meshed with 8579 curved tetrahedra. The tests were done on a Intel Core i7 960 and
by using the OpenBLAS implementation of the matrix-matrix product with 4 threads. It is
worth mentioning that the classical implementation also uses 4 threads for the assembly.
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Figure 1: Assembly time and speedup for the classical and fast procedures

It can be seen from Figure 1 that the matrix procedure is much faster than the classical
one for high order interpolations. For instance, the speedup on an order 6 problem, with more
than 900.000 unknowns, is around 20.
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Abstract

The simulation of quiescant water with volume-of-�uid methods gives rise to spuri-
ous velocities. From a certain treshold on time step, these velocities grow in unstable
modes. The mechanism for the instability is identi�ed and a quantitative upper bound
for a stable time step is given. Theoretical results are checked against simulated cases.
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1 Introduction

This paper presents the result of a study on the appearance of unstable modes in the two-
phase �ow solver interFoam. InterFoam is a part of the open-source OpenFOAM library for
Computational Fluid Dynamics [1], and solves the Navier-Stokes equations together with a
transport equation for the Volume of Fluid (VoF).

The appearance of unstable modes is already obvious when trying to �nd a solution for
the hydrostatic case (the “bucket of water”), using orthogonal meshes, aligned with gravity.
Once the solution is initialized, one does not expect anything to happen. However, it appears
that the solution is unstable for time steps much smaller than the stable time step predicted
by the CFL-criterion. We were able to identify the mechanism for the instability, which is
explained below.

2 Governing Equations

In order to identify the source of the instability, subsequently, terms in the original equations
were elimated. As such, we arrived at a stripped system of a constant density �ow, with a
buoyancy force, proportional to the gradient of the volume fraction:

∂α

∂t
+ ∇ · (uα ) = 0 (1)

∂u

∂t
= −∇prдh − дh∇α (2)

∇ · u = 0, (3)
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with a similar behaviour concerning the spurious velocities as the original solver. α is the
VoF function, u the velocity, prдh a modi�ed pressure, д the gravitational acceleration and h
the local heigth (vertical coordinate). The system is solved as follows. First, the equation for
α (1) is progressed in time, using an explicit step. Next, the velocity is predicted from the
momentum equation (2), disregarding the e�ect of pressure and buoyancy. The velocity is
corrected after solving an equation for pressure, following from combination of (2) and (3).

3 Derivation of an upper bound for the time step restriction

The above system proves unstable for high time steps. Indeed: after the solving the pressure
equation, a correction is added to the face volume �ux:

un+1 = u∗ + · · · − ∆tдh∇α (4)

Taking the derivative of the above equation with respect to time and making use of the explicit
VoF equation (with u evaluated at the phase), we can destillate an ampli�cation factor G for
the stripped algorithm:

∂un+1

∂t
=
∂u∗

∂t
+ · · · + ∆tдh∇ (∇ · (uα )) , (5)

G = 2 (∆t )
2

(∆x )2
дhα ≤ 2 (∆t )

2

(∆x )2
дh. (6)

A stable solution is obtained when G < 1:

∆t <
∆x√
2дh
. (7)

The time step restriction is only applicable in multi-dimensional simulations, as in 1D, the
pressure perfectly counterbalances the buoyuancy force. In multi-D, the pressure equation is
only a weak formulation of this counterbalancing e�ect, and hence the rotational component
of дh∇α is a trigger for instability. As such, after some manipulation a better estimate of the
time step restriction (7) can be determined:

∆t <
∆x√
д∆x
. (8)

As an example, the above restrictions were evaluated on a mesh with grid cell size 0.1m×
0.1m. By virtue of (8) a stable time step of 0.1 seconds is predicted. During simualtion, an
unstable solution was obtained from ∆t = 0.3s onwards, where a growing di�usivity of the
interface was seen to aid in the stability of the entire solution.
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Abstract

A recently developed multigrid method [Botto, CPC 184, 1033–1044] has been tested
for the inversion of the Helmholz-type equation for the free surface in the environmental
public domain code COHERENS. Using standard multigrid, convergence issues might
arise in cases where coarse grid cells are agglomerated from both dry and wet cells at ir-
regular coastlines. We show that by modifying the prolongation operator and the coarse
grid discretization, better convergence is obtained. Several test cases from literature sup-
port this conclusion.

Key words: multigrid, Helmholz equation, shallow water �ow, stair-case boundary
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1 Problem statement and method description

The present paper is a continuation of the work, presented in [6], where the 3D hydrostatic
free surface �ow solver COHERENS [4] was modi�ed into a semi-implicit solver for accelera-
tion of the code. As a result of this operation, an elliptic equation for the free surface ζ needs
inversion:

∂ζ

∂t
− ∂
∂x

(
дH∆t

∂ζ

∂x

)
− ∂
∂y

(
дH∆t

∂ζ

∂y

)
= −∂U

∗

∂x
− ∂V

∗

∂y
. (1)

The present contribution involves the implementation of a geometric multigrid solver, to
achieve further acceleration. We use Gauss-Seidel Red-Black iterations as a smoother, stand-
ard averaging for the restriction and bilinear prolongation in a multigrid W-cycle on the
staggered mesh con�guration. The code typically uses meshes that are not aligned with the
boundaries, resulting in a stair-case representation of e.g. coastlines (Fig. 1a). This has par-
ticular repercussions on the multigrid scheme, since coarse cells can be made out of both wet
and dry cells on the �ner level. Recent progress on how to deal with these circumstances is
reported in [1, 2, 3, 5]. We follow the approach of [2], introducing a cell volume fraction β , in-
dicating the amount of �ne grid wet cells in one coarse cell. This parameter is then introduced
in the time derivative term of eq. (1) and in the prolongation operator.
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The method shows good convergence on the Rhône-estuary test case presented (Fig. 1b).
In case no β-weighting is used, the method converges more slowly, con�rming the results
of [3]. In contrast to the �ndings of [5], we did not encounter any instabilities because of
insu�cient error smoothing the boundaries.

In the full paper, more details on the method, convergence tests and a series of challenging
test problems, including obstacles of di�erent shapes, are presented.

(a) Bathymetry (b) Residual of the iterative solver

Figure 1: Results from test-case Rhône, featuring stair-case boundaries.
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Abstract

Relevant to a large number of industrial applications, moving boundary problems
have been routinely simulated using di�erent computational �uid dynamics approaches.
As a novel strategy, this study is aimed at enhancing the variant immersed-boundary
lattice Boltzmann method (IB-LBM) by more seamlessly connecting the feedback model
with local mesh re�nement techniques, so that an enlarged class of moving boundary
problems, including the interactions between �owing �uids and moving objects of en-
gineering interests, can be numerically investigated. Owing to the utilization of both
explicit and implicit schemes in the present approach, the advantages resulting from this
hybrid method, such as simple principle, easy implementation, and inherent satisfac-
tion of no-slip boundary condition for solid surfaces, are fully exhibited. The local mesh
re�nement procedure employed in the present approach relies on the bubble function,
which requests only the spatial interpolation but no temporal interpolation. Ranging
from the �ows around a single cylinder of both stationary and mobile natures to the �ow
around bi-cylinders in motion with respect to each other, a variety of test cases performed
in this study has demonstrated the accuracy of the present IB-LBM approach when com-
pared to the results obtained by using other numerical methods. Moreover, the IB-LBM
is also employed to simulate a more challenging �ow associated with a �apping wing as
moving object, the analysis is fully provided on the in�uences of the Reynolds number,
�apping amplitude, and phase di�erence between the translation and rotation motions
on the aerodynamic performance in this case, and the usefulness and e�ectiveness of this
new approach are further revealed.

Key words: Lattice Boltzmann method, Immersed boundary method, Feedback model,
Mesh re�nement, Moving boundary
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Abstract

In this contribution we implement and assess numerical methods for gradient sys-
tems, i.e. dynamical systems that possess a Lyapunov function, and consequently are
stable. In particular, we claim that discrete gradient methods are well suited to so-called
lattice systems, i.e. systems of ordinary di�erential equations that can reach high di-
mensionality. For these systems, reproducing the stable qualitative behaviour is more
important than achieving an overly accurate quantitative approximation. The presen-
ted results show that discrete gradient methods outperform conventional Runge-Kutta
methods, since these latter algorithms destroy the stability of the original system.

Key words: Gradient Systems, Geometric Numerical Integration, Lyapunov Function,
Discrete Gradient, Lattice Systems

MSC 2010: 34D20, 65P40

1 Introduction

The main aim of this paper is to analyse the performance of numerical methods speci�cally
designed to preserve the Lyapunov function of a stable dynamical system. In particular, we
deal with higher-dimensional systems of Ordinary Di�erential Equations (ODEs), which can
be regarded as abstract models of lattice systems arising in a wide variety of �elds of physics,
biology and engineering, e.g. the Ising model in statistical mechanics, and the Toda lattice
in crystallography. Although some of these systems present a cyclic behaviour, it is often
the case that the system converges towards a stable state while, at the same time, the energy
diminishes.

From a mathematical point of view, the energy-diminishing feature amounts to proving
that the system possesses a Lyapunov function, which in turn is a proof for the asymptotic
stability of �xed points (see e.g. [3] for references and background). In other words, the
distinguishing characteristic of a Lyapunov function is that it decreases along the system
trajectories and the main goal of this work is to reproduce this behaviour under discretization
by a numerical method. ODEs with a Lyapunov function V receive the name of gradient
systems because they can be rewritten as

dy
dt
= L(y) ∇V (y) (1)
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where ∇V (y) is the gradient of V and L is a negative de�nite matrix.
Within the framework of Geometric Numeric Integration [1], many methods for ODEs

have been designed to preserve qualitative features. However, most of these proposals are
related to symplectic methods, i.e. methods for Hamiltonian systems. In contrast, numerical
methods for gradient systems are scarce. In this regard, because of its conceptual simplicity,
discrete gradient methods [4] are appealing, but there is still limited experience as to their
relative strengths and limitations. This paper aims at exploring a discrete gradient method,
by undertaking its implementation and application to a particular class of lattice systems.

2 Discrete gradient methods for Hop�eld neural networks

Discrete gradient methods consist in approximating (1) by the iteration
yn+1 − yn

h
= L̃(yn ,yn+1,h) ∇V (yn ,yn+1),

where L̃ and∇V are discretizations ofL and∇V , respectively, which must ful�l the consistency
conditions L̃(y,y,0) = L(y) and∇V (y,y) = ∇V (y). Besides, the discrete gradient is de�ned by
the requirement ∇V (yn ,yn+1) · (yn+1 − yn ) = V (yn+1) −V (yn ). It is worth emphasizing that
there is considerable freedom in the choice of L̃ and ∇V , so one of the contributions of this
work is to determine which values of these design parameters result in more favourable solu-
tions. We have implemented the coordinate increment discrete gradient, whereas the matrix L̃
is assumed to be identical to L. It turns out that this choice allows for obtaining an explicit
method for particular cases of ODEs.

Continuous Hop�eld neural networks [2] were proposed as a model of biological neurons,
given by the system of ODEs:

dui
dt
=

n∑

j=1
wi j yj − bi , yi = tanhui , 1 ≤ i ≤ n.

These networks may be de�ned for a high dimension n, and they possess a multilinear Lya-
punov function V (y) = − 1

2
∑n

i=1
∑n

j=1wi j yi yj +
∑n

i=1 bi yi . After eliminating the internal
variables ui , this model can be cast into the gradient form of (1). The numerical experiments
that have been performed show that the discrete gradient method preserves the energy-
diminishing feature of Hop�eld networks, whereas the Euler rule and other conventional
Runge-Kutta methods fail to reproduce the expected stable behaviour. Also, the implemen-
ted discrete gradient method is computationally favourable, since it can be written in explicit
form.
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Abstract

A semilinear parabolic problem of second order with an unknown solely time-dependent
convolution kernel is considered. The missing kernel is recovered from an additional
integral measurement. The existence, uniqueness and regularity of a weak solution is
addressed. We design a numerical algorithm based on Rothe’s method, derive a priori
estimates and prove convergence of iterates towards the exact solution.

Key words: parabolic IBVP, convolution kernel, reconstruction, convergence, a priori es-
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1 Introduction

We want to determine the solution u and reconstructed a solely time-dependent convolution
kernel K of the following nonlinear problem



∂tu − ∆u + K (t )h + (K ∗ u) (t ) = f (u,∇u), in Ω × Θ,
−∇u · n = д, on Γ × Θ,
u (x,0) = u0 (x),

(1)

where Ω is a Lipschitz domain in RN , N ≥ 1, with ∂Ω = Γ and Θ = [0,T ], T > 0, the time
frame, when a global measurement

∫

Ω
u (x,t )dx =m(t )

is known.
Such type of integro-di�erential problems arise for example elastoplasticity (cf. [1]) or in

the theory of reactive contaminant transport. In [2] one considers the following di�erential
equation

∂tC + ∇ · (VC ) − ∆C =
−ρb
n
∂tS

for the aqueous concentrationC and sorbed concentration per unit mass of solid S with mass
transformation rate in �rst order kinetics form of

∂tS = Kr (KdC − S )

page 219 of 223 ISBN: 978-9-08223-090-1 ACOMEN©2014
[paper 103]



with desorption rate Kr and equilibrium distribution coe�cient Kd . This is indeed a problem
of type (1) for u = C with

K (t ) = −ρb
n
K2
rKde

−Kr t , h(t ) = − S0
KrKd

and f (x ,r) =
−ρb
n

KrKdx − V · r.

We will prove the following existence and uniqueness result.

Theorem Suppose f is bounded and Lipschitz continuous in all variables, д ∈ C1 (Θ,L2 (Γ)),
h ∈ C0 (Θ,H1 (Ω)) ∩ C1 (Θ,L2 (Ω)) and mint ∈Θ |(h(t ),1) | ≥ ω > 0, m ∈ C2 (Θ,R) and u0 ∈
H2 (Ω). Then there exists a unique couple solutions 〈u,K〉 to (1), where u ∈ C(Θ,H1 (Ω)), ∂tu ∈
L∞ (Θ,L2 (Ω)) and K ∈ C(Θ), K ′ ∈ L2 (Θ).

Moreover we construct a numerical model to solve this problem based on the variational
formulation and Rothe’s functions [3].

Algorithm: numerical scheme in pseudo code
input : T > 0, n ∈ N and functions f , д, h,m and u0
output: kernel K and solution u at discrete time steps

1 τ ← T /n;
2 θ ← [0 : τ : T ];
3 K← zeros(n + 1);
4 u← eval(u0,θ );

5 K[0]← 1
(h0,1)

(
( f (u0,∇u0),1) −m′0 − (д0,1)Γ

) ;

6 for i = 1 to n do

7 K[i]← 1
(hi ,1) +m0τ

*,( fi−1,1) − (дi ,1)Γ −
i−1∑

k=1
Kkmi−kτ −m′i+-;

8 u[i]← solveEP(B (ui ,ϕ) = Fi (ϕ));
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